Solutions for Power Control \& Safety of photovoltaic applications

2014

Contents

An independent manufacturer p. 4
Four key applications: the benefit of a specialist p. 5
Services \& Technical Assistance p. 6
A cutting-edge laboratory p. 8
References list. p. 9

Photovoltaic range

Photovoltaic application solutions

Load break switches
SIRCO MC PV
p 14
gPV fuses
p 94
RMPV
p 102

Electronic protection

The complete product range

Solutions for Power, Control, Safety
\& Energy Efficiency

SURGYS G51-PV
p 106

SIRCO PV PA
p 90

PV fuse bases p 104

Transfer switches p 112

Electronic protection p 114

An independent manufacturer

The benefit of a specialist

Founded in 1922, SOCOMEC is an industrial group with a workforce of 3000 people. Our core business - the availability, control and safety of low voltage electrical networks with increased focus on our customers' power performance.

The culture of independence

The SOCOMEC Group's independence ensures control over its own decision-making, respecting the values advocated by its own family shareholders and shared by its employees.
With around 30 subsidiaries located on all five continents, SOCOMEC pursues international development by targeting industrial and service applications where the quality of its expertise makes all the difference.

The spirit of innovation

As undisputed specialists in UPS systems, mains supply changeover, power conversion and measurement, SOCOMEC dedicates nearly 10% of its turnover to R\&D. As a result the Group can achieve its ambition of always being one technological step ahead.

The vision of a specialist

As a manufacturer with complete control over its technological processes, SOCOMEC is quite unlike the more general providers. The Group is constantly improving its fields of expertise in order to offer its clients increasingly customised, appropriate solutions.

A flexible manufacturing structure

Backed by two European centres of excellence (France and Italy), the Group also benefits from competitive production sites such as Tunisia and locations in the major emerging markets (India and China).
These sites have all implemented a system of continuous improvement based on Lean Management principles, and are therefore in a position to provide high levels of quality, and meet the deadlines and cost requirements expected by customers.

The focus on service

Our manufacturer's expertise naturally extends to a complete range of services designed to facilitate the research, implementation and operation of our solutions. Our service teams have built their reputation on reassuring guidance, flexible skills and reactivity.

Responsible growth

As a Group which is open to all cultures and firmly committed to human values, SOCOMEC promotes employee initiative and commitment. Working relationships are based on the idea of partnerships and respect for shared ethics. Through the company's commitment to achieving harmonious, lasting development, SOCOMEC fully embraces its responsibilities not only towards its shareholders, employees, customers and partners, but also towards society as a whole and its environment.
SOCOMEC has been a signatory to the Global Compact since 2003.

Four key applications: the know-how of a specialist

Critical Power
Ensuring the availability of high-quality power for critical applications.

Thanks to the company's wide range of continuously evolving products, solutions and services, SOCOMEC are experts in the three essential technologies that can ensure the high availability of supply to critical facilities and buildings i.e.:

- uninterruptible power supplies (UPS) that provide high-quality power and reduce
distortion and interruptions to the mains supply due to their power storage backup,
- changeover of high availability sources to transfer supply to an operational backup source,
- continuous monitoring of installation facilities to prevent failures and reduce operating losses.

Power Control \& Safety
Managing power and protecting individuals and property.

SOCOMEC's expertise in this domain is unquestionable; the company is an undisputed leader in power switching and changeover functions, and has been a specialist manufacturer of electrical equipment since 1922. The company has long defended the benefits of fuse protection for individuals and
property, and has become a major player in cutting-edge technology such as the monitoring and detection of insulation defects. SOCOMEC guarantees solutions and services which are both relevant and efficient.

Solar Power
Guaranteeing the safety and durability of photovoltaic (PV) facilities.

As experts in the solar energy equipment field, SOCOMEC has all the specialist know-how for implementing key strategic functions in on-grid and off-grid PV facilities, including:

- safety, through specially designed switch disconnectors to cut the DC current generated by solar panels regardless of the facility configuration and operating conditions,
- the reliability of DC facilities thanks to solutions preventing the degradation
of insulation and electric arc failure in DC current,
- control of very high-efficiency energy conversion, via PV inverters, to transform all energy generated by the solar panels into power to be consumed locally or re-injected into the national grid,
- PV production and energy storage solutions for on-grid and off-grid applications.

Energy Efficiency
Improving building and facility energy efficiency.

SOCOMEC solutions, ranging from sensors to the wide choice of innovative, modular software packages, are driven by experts in energy efficiency. They meet the essential requirements of managers or operators of tertiary, industrial or local authority buildings, and make it possible to:

- measure power consumption, identify sources of excess consumption, and raise occupant awareness,
- limit reactive energy and prevent associated tariff penalties,
- use the best tariffs, check supplier invoicing and accurately distribute energy bills amongst consumer entities.

Services \& Technical Assistance

the manufacturer's guarantee

Over several decades, SOCOMEC Systems have acquired a distinguished reputation in the control, safety and performance of low voltage electrical distribution equipment. Our manufacturer's expertise naturally extends to a complete offer of services designed to help you select, implement and get the most out of our solutions.

Customised support...

Assessment and sizing

Depending on your requirements, our experts collect and analyse all the relevant data in order to recommend the system best adapted to your installation.

Commissioning

Installation of your equipment is carried out by a specialist, and is totally compatible with and adapted to your use.

Maintenance

A wide range of preventive or corrective maintenance options designed to suit your installation and its environment, and to ensure continuity of service of your electrical networks.

Training

You will receive training, specially adapted to your needs, in order to familiarise yourself with our equipment and enable you to use it to your best advantage.

... to ensure you a successful project

Source inversion in complete safety

Changeover switches are strategic components that ensure continuity of service of supplies In order to guarantee complete operational safety, we will implement our range of innovative source transfer solutions.

Your energy consumption efficiently and comprehensively managed
Monitoring of energy consumption within a production unit is one of your primary operational considerations From the preliminary assessment of your installation to the adaptation of the software, dedicated SOCOMEC experts are on hand to assist you throughout the entire energy performance process

Effective insulation monitoring for your electrical installation

To ensure that your fault monitoring and location system operates to its optimum capacity, our team of specialists perform all operations on site.
This means that you benefit from renowned expertise, as well as solutions tailored to the specific monitoring requirements of your electrical installation.

The control of reactive energy on your electricity bill
In terms of power factor correction, the support of a specialist is essential to appropriately size your system and meet the desired efficiency.
SOCOMEC will help you to make the right choices and therefore to benefit from a longterm solution. A real return on investment.
For more information, please see pages
"Reactive energy power factory correction'.

A cutting-edge laboratory

The backing of an expert

Since 1965, the Pierre Siat test laboratory has used its expertise to guarantee the reliability and conformity of SOCOMEC products and solutions. Our customers are also welcome...

A decisive link

Located at the Company's headquarters in Benfeld (France), the Pierre Siat test laboratory is one of SOCOMEC's main quality pillars: its contribution to the development, qualification and certification phases plays a decisive role in the process leading to the creation of a product or solution.

Global scale

This totally independent laboratory is recognised by the major certification bodies worldwide: a member of the ASEFA ${ }^{(1)}$ and the LOVAG ${ }^{(2)}$, it is accredited by COFRAC ${ }^{(3)}$, UL (CTDP ${ }^{(4)}$), CSA (shared certification) and KEMA (SMT/WMT ${ }^{(5)}$). It also works in partnership with numerous international certification organisations ${ }^{(6)}$. The quality and safety requirements specific to each country are therefore fully taken into account.

Specialist facilities

With its 100 MVA (Idc 100 kA rms 1 s) short-circuit platform, three 10 kA overload platforms and numerous other test instruments in facilities covering $1500 \mathrm{~m}^{2}$, the Pierre Siat laboratory is currently the $2^{\text {nd }}$ French power laboratory. It combines expertise in electricity and mechanics, pneumatics and computing.

Ongoing commitment

To adapt to the increasingly demanding standards and ever more innovative and high-performance products, the Pierre Siat laboratory is permanently extending the scope of its tests, investing whenever necessary in new equipment.

A vast range of tests

The laboratory submits all SOCOMEC products and solutions (including those in enclosures) to numerous tests in the following fields:

- functional: component resistance and operating tests,
- dielectric: immunity to interference, dielectric insulation, overvoltage, overcurrent,
- mechanical: endurance and mechanical shocks, etc.,
- environment: functional or electrical tests under extreme conditions (temperatures, salt spray, etc.), vibrations,
- AC/DC endurance: in operation and under controlled temperatures (arcs, LV/HV power cuts, etc.),
- temperature rise,
- electromagnetic compatibility (EMC),
- metrology,
- safety: flammability, etc.

Conducted during the design and production phases, these tests guarantee the long-term reliability of the equipment sold.

Customized services

These test facilities and expertise are also available to our partners who require assistance with the qualification and certification of their products or equipment.

We issue certificates of conformity and performance declarations upon request.
For more information, visit our web site: www.socomec.com/testing-laboratory_en.html
(1) Association des Stations d'Essais Françaises
d'Appareils électriques basse tensio (French association
of low voltage electrical equipment test stations)
(2) Low Voltage Agreement Group
(3) Comité Français d'Accréditation (French accreditation body)
(4) Client test data programme
(5) Supervised Manufacturer's testing/Witnessed manufacturer's testing
(6) KEMA, CEBEC, UL, CSA, ASTA, Lloyd's Register of Shipping, Bureau Véritas, BBJ -SEP, EZU, GOST-R, etc.

References list

References	Pages	References	Pages	References	Pages	References	Pages
$11 \mathrm{xx} \times \times \mathrm{x}$	42,43	159x \times x x x	84	21PV 8144	28,33	$2798 \times \times \times \mathrm{x}$	63
$1400 \times \times \times x$	42 to 44, 60 to 62	$19 \mathrm{xx} \times \times \times \mathrm{x}$	83	21PV 8154	16, 24	$27990 \times 0 \times$	63
$140100 \times x$	45,63	21070515	19	22090016	37	$27993 \times 0 \times$	42,44
$140106 \times x$	35,36	21070516	16,19	22092016	35, 37	2799 70xx	42,43
1401 152x	42, 44, 60 to 62	21070517	28,29	22944016	37	27997145	42, 43, 60 to 62
1401 153x	$42,44,60$ to 62	2107 052x	19	$22990 \times 0 \times$	35,37	27DC 4xxx	60
14011540	44,60 to 62	2107 053x	19	$22995 \times$ x	35	27DC 8xxx	60,61
$1409 \times x \times x$	35,36	21100001	28	$22 \mathrm{Px} \times \times \times \mathrm{x}$	35	27PV 2xxx	60
$141 \times \times \times x$	35,36	21190001	16,20	2600 x0xx	45	7PV 3xxx	61
$1421 \times \times \times$	42,43	2119001 x	16,18, 28	26090025	42,46, 83	PV 3xx	,61
1423 xax	42,43	2119 1xxx	16,18,28	26090063	83	27PV 403x	42,60
$1424 \times \times \times$	42,43	2119 3xxx	16,18, 29	26090080	42,43,46	27PV 406x	60
14290000	44	21290001	17,20	26091100	42, 43, 46, 83	27PV 5xax	60
142D $\times x \times x$	60 to 62	212901 xx	17,18	26091160	83	27PV 6026	43,61
$142 \mathrm{E} \times \times \times$	60 to 62	$213 \mathrm{x} \times 0 \times \mathrm{x}$	17,18	26091200	42, 43, 46, 83	27PV 6032	43
$142 \mathrm{~F} \times \times x$	60 to 62	$219 \times \times \times \times$	19,29	26092025	83, 92	27PV 6039	43,61
$142 \mathrm{G} \times \times \times \times$	60 to 62	21PV 2102	16,24,28, 33	26092063	83	27PV 802x	42
$143 \mathrm{x} \times \times \times \mathrm{x}$	60 to 62	21PV 2162	16, 24	2609 208x	92	27PV 8032	42
1443 x $x \times x$	42,43	21PV $22 \times x$	17,25	2609 4xax	92	27PV 8039	42,60
$1444 \times \times \times$	42, 43	21PV 23xx	17, 25	26944021	83, 84	27PV 8060	60,61
144D $x \times \infty \times$	60,62	21PV 31xx	16, 24	26944040	92	$395 \times \times \times \times \times$	66
$144 \mathrm{E} \times \times \times \times$	60,62	21PV 32xx	17,25	26944051	83, 84,92	399x $\times \times \times x$	35, 37
$146 \mathrm{x} \times \times \times \times$	18	21PV 33xx	17,25	$2698 \times 0 \times x$	45	$415 \mathrm{x} \times \times \times \mathrm{x}$	63
$147 \times \times \times \times$	28,29	21PV 3722	16,24	$2699 \times x \times$	45	4199 0x0x	63
14910111	35,36	21PV 38xx	17, 25	26PV $2 \times x$ x	42	41993018	42 to 44, 60 to 62
14930000	45,63	21PV 39xx	17,25	26PV 4xax	42	41993019	, 62
$149301 \times x$	35, 36	21PV 4124	28	26PV 5xxx	42	193019	, 62
1494 x \times x	35,36	21PV 4144	28,33	26PV 8xx	42,43	$49 \mathrm{xx} \times 20 \times$	107
$15091 \times x \times$	84	21PV 4754	16,24	26PV 9xxx	92	56PV 9901	96
1509 3x×x	45	21PV 48xx	17, 25	27090027	43, 46, 60, 61, 64	$57 \mathrm{xx} \times \times \times \mathrm{x}$	103
15094025	83, 84	21PV 49xx	17, 25	27090045	42, 43, 46, 60, 61, 64	$60 x x \times x \times x$	96
1509 406x	45, 83, 84	21PV 5102	16, 24, 28, 33	27090062	60, 61, 64	$61 \times x \times 0 \times x$	96
1509 408x	45, 83, 84	21PV 52xx	17, 25	27090081	60,64	$650 \mathrm{x} \times \times \times \mathrm{x}$	105
15094160	83	21PV 53xx	17, 25	27090121	60,61,64	$651 \times x \times x$	105
15094199	45	21PV 6xxx	16,24	$27091 \times 0 \times$	60,64	$65 \mathrm{P} x \times \infty \times$	96,105
15094200	83, 84	21PV 8124	28	$272 \mathrm{x} \times \times \times \mathrm{x}$	66		

Photovoltaic range

The right components for all PV installations . p. 12

Load break switches

SIRCO MC PV IEC

25 to 40 A
p. 14

SIRCO MC PV UL
25 to 45 A
p. 26

SIRCO MV PV
63 to 80 A
p. 34

Remotely operated

SIRCO PV UL
100 to 2000 A
p. 58

SIRCO MOT PV
200 to 3200 A
p. 82

Pneumatically operated

Fuse protection

-1
-4
-4
RM PV
p. 102

6 65 6 6

PV fuse bases p. 104

Services \& Technical Assistance:
second nature!
For further information, see page 6.

More about our products

FUSERBLOCs LMDC are designed to perform the maintenance of PV inverters without stopping the entire installation.

See page 111

Electronic protection
Protection against overvoltages

SURGYS G51-PV
p. 106

The right components for all PV installations

PV installations for residential buildings

PV installations for commercial and solar parks

Inverter		
		PV load break switches, manually operated - SIRCO PV, 100 to 3200 A, 1000 \& 1500 VDC - SIRCO MV PV, 63 \& 80 A, 1000 VDC - SIRCO MC PV, 20 to 45 A, 1000 VDC PV load break switches, remotely operated - SIRCO Mot PV, 100 to 3200 A, 1000 VDC, motorised - SIRCO PV PA, 160 to 800 A, 1000 VDC, pneumatically operated AC non fusible and fusible load break switches - SIRCO M, 16 to 125 A, 690 VAC - SIRCO, 100 to 5000 A, 690 VAC - FUSERBLOC, 25 to 1250 A, 690 VAC PV fuses and holder - 1 to 600 A, 1000 \& 1500 VDC Surge protection devices - SURGYS, 1000 \& 1500 VDC
Recombiner box		
		PV load break switches for 1 to 4 circuits - SIRCO PV, 100 to 3200 A, 1000 \& 1500 VDC PV fuses and holder - 1 to $600 \mathrm{~A}, 1000$ \& 1500 VDC
Combiner box		
		PV load break switches, manually operated SIRCO PV, 100 to 3200 A, 1000 \& 1500 VDC SIRCO MV PV, 63 \& 80 A, 1000 VDC SIRCO MC PV, 20 to 45 A, 1000 VDC Fuse holder - RM PV up to 32 A, 1000 VDC PV fuses - 10×38 PV, 1 to 32 A, 1000 VDC Surge protection devices - SURGYS, 1000 \& 1500 VDC

SIRCO MC PV IEC 60947-3

Load break switches for photovoltaic applications from 25 to 40 A, up to 1000 VDC

SIRCO MC PV 25 A - 1000 VDC DIN-rail mounting

SIRCO MC PV 25 A - 1000 VDC Door mounting

Function
SIRCO MC PV are DC load break switches. They make and break under load conditions and provide optimum safety isolation for any PV circuit.

Advantages

Compact

Thanks to its compact design, the space needed within the combiner box or the solar inverter is greatly reduced.

High breaking capacity up to 1000 VDC

- Making and breaking capacity under load conditions up to 1000 VDC.
- Specific photovoltaic test beyond requirements of IEC 60947-3 standard.

Safety

- Bridging bars are factory fitted for easier, quicker and safer connection.
- Direct access to connection terminals for adequate tightening.

Easy mounting

Three mounting possibilities are available for optimum integration and time saving:

- DIN-rail or back plate mounting.
- Door mounting.
- "Quick Fix" mounting (quarter turn fixation without tools).

Approvals and certifications ${ }^{(1)}$

(CC)

(1) Product reference on request.

Strong points

$>$ Compact
> High breaking capacity up to 1000 VDC
> Safety
> Easy assembling

Check it out

$>$ Need an enclosed switch? No problem with our specific product department. We have solutions for any requirement.

$$
1 / 20300
$$

0
∞
0_{1}
$\stackrel{1}{8}$
0

SIRCO MC PV
DIN-rail mounting

SIRCO MC PV
Door mounted

Multi-circuit switching

- The SIRCO MC PV for dual circuits (2 MPPT: Maximum Power Point Tracking) enables connection of two independent photovoltaic circuits to a single switch in order to reduce the costs of the global solution.

Completely isolate the inverter within one operation

- The SIRCO MC PV with two additional AC poles can be integrated into the inverter to provide complete and simultaneous isolation of the PV and AC circuits. This improves safety and reduces the overall product size.

What you need to know

For grounded or ungrounded networks:
It is possible to use the SIRCO MC PV in both network systems, either switching one or both polarities.

SIRCO MC PV IEC 60947-3
Load break switches for photovoltaic applications
from 25 to 40 A, up to 1000 VDC

References
SIRCO MC PV 600 VDC - DIN rail or back plate mounting

Rating (A)	Circuit type	Number of poles by PV polarity ${ }^{(3)}$	No of poles AC current	Switch body	Direct handle ${ }^{(1)}$	External handle	Shaft for external handle	Auxiliary contact
30 A	Single PV circuit	$1 \mathrm{P}+1 \mathrm{P}$ -	-	21PV 2102	MCO type Blue $21190012^{(2)}$ MC01 type Blue 21191012	$\begin{gathered} \text { MC1 type } \\ \text { Black } \\ \text { IP65 } \\ 21193312^{(2)} \\ \text { Red / Yellow } \\ \text { IP65 } \\ 21193313 \end{gathered}$	$\begin{gathered} 165 \ldots 200 \mathrm{~mm} \\ 21070516 \end{gathered}$	$\begin{gathered} 1 \text { contact } \\ \text { NC+NO } \\ 21190001 \end{gathered}$
	PV + AC circuit	$1 \mathrm{P}+$, 1P-	$2 P$	21PV 2162				
	Dual PV circuit	$2 \times(1 \mathrm{P}+, 1 \mathrm{P}-)$	-	21PV 5102				
40 A	Single PV circuit	$2 \mathrm{P}+1 \mathrm{P}-$	-	21PV 3124				
	PV + AC circuit	$2 \mathrm{P}+1 \mathrm{P}$ -	2 P	21PV 3184				
	Dual PV circuit	$2 \times(1 \mathrm{P}+, 1 \mathrm{P}-)$	-	21PV 6124	MC01 type Blue 21191412			

(1) 45 mm modular DIN front plate included.
(2) Standard handle.
(3) Default connected device (see "Connection of poles" page 24).

SIRCO MC PV 1000 VDC - DIN rail or back plate mounting

Rating (A)	Circuit type	Number of poles by PV polarity ${ }^{(3)}$	No of poles AC current	Switch body	Direct handle ${ }^{(1)}$	External handle	Shaft for external handle	Auxiliary contact
25 A	Single PV circuit	$2 \mathrm{P}+1 \mathrm{P}$ -	Please consult us	21PV 3722	$\begin{gathered} \text { MCO type } \\ \text { Blue } \\ 21190012^{(2)} \\ \\ \text { MC01 type } \\ \text { Blue } \\ 21191012 \end{gathered}$			
	Dual PV circuit	$2 \times(1 \mathrm{P}+, 1 \mathrm{P}-)$		21PV 6722	$\begin{gathered} \text { MC01 type } \\ \text { Blue } \\ 21191412 \end{gathered}$	$\begin{gathered} \text { Black } \\ \text { MC1 type } \\ \text { IP65 } \\ 2119 \text { 3312 }^{(2)} \end{gathered}$	$165 \ldots 200 \mathrm{~mm}$	1 contact
40 A	Single PV circuit	$2 \mathrm{P}+, 2 \mathrm{P}-$		21PV 4754	$\begin{gathered} \text { MCO type } \\ \text { Blue } \\ 21190012^{(2)} \\ \text { MC01 type } \\ \text { Blue } \\ 21191012 \end{gathered}$	$\begin{gathered} \text { Red / Yellow } \\ \text { IP65 } \\ 21193313 \end{gathered}$		21190001
	Dual PV circuit	$2 \times(2 \mathrm{P}+, 2 \mathrm{P}$ -		21PV 8154	MC01 type Blue 21191412			

[^0]SIRCO MC PV IEC 60947-3
Load break switches for photovoltaic applications
from 25 to 40 A, up to 1000 VDC

SIRCO MC PV 600 VDC - Door mounting

Rating (A)	Circuit type	Number of poles by PV polarity ${ }^{(1)}$	No of poles AC current	Switch body ${ }^{(3)}$	External handle ${ }^{(3)}$	Switch body "Quick Fix"	External handle "Quick Fix"	Auxiliary contact
30 A	Single PV circuit	$1 \mathrm{P}+1 \mathrm{P}$ -	-	21PV 2202	$\begin{aligned} & \text { MC2 type } \\ & \text { Blue } \\ & \text { IP55 } \\ & 21290112^{(2)} \end{aligned}$	21PV 2302	$\begin{gathered} \text { MC3 type } \\ \text { Blue } \\ \text { IP65 } \\ 21391212^{(2)} \\ \text { MC4 type } \\ \text { Black } \\ \text { IP65 } \\ 21393312 \end{gathered}$	$\begin{aligned} & 1 \text { contact } \\ & \text { NC }+ \text { NO } \\ & 21290001 \end{aligned}$
	PV + AC circuit	$1 \mathrm{P}+, 1 \mathrm{P}$ -	2 P	21PV 2262		21PV 2362		
	Dual PV circuit	$2 \times(1 \mathrm{P}+, 1 \mathrm{P}-)$	-	21PV 5202		21PV 5302		
40 A	Single PV circuit	$2 \mathrm{P}+1 \mathrm{P}-$	-	21PV 3224		21PV 3324	$\begin{gathered} \text { Red/Yellow } \\ \text { IP65 } \\ 21393313 \end{gathered}$	
	PV + AC circuit	$2 \mathrm{P}+1 \mathrm{P}-$	2 P	21PV 3284		21PV 3384		

(1) Default connected device (see "Connection of poles" page 24),
(2) Standard handle.
(3) Door mounted standard.

SIRCO MC PV 1000 VDC - Door mounting

Rating (A)	Circuit type	Number of poles by PV polarity ${ }^{(1)}$	No of poles AC current	Switch body ${ }^{(3)}$	External handle ${ }^{(3)}$	Switch body "Quick Fix"	External handle "Quick Fix"	Auxiliary contact
25 A	Single PV circuit	$2 \mathrm{P}+, 1 \mathrm{P}-$	Please consult us	21PV 3822	$\begin{gathered} \text { MC2 type } \\ \text { Blue } \\ \text { IP55 } \\ 21290112 \end{gathered}$	21PV 3922	$\begin{gathered} \text { MC3 type } \\ \text { Blue } \\ \text { IP65 } \\ 21391212^{(2)} \\ \text { MC4 type } \\ \text { Black } \\ \text { IP65 } \\ 21393312 \end{gathered}$	$\begin{gathered} 1 \text { contact } \\ \text { NC+NO } \\ 21290001 \end{gathered}$
40 A	Single PV circuit	$2 \mathrm{P}+, 2 \mathrm{P}-$		21PV 4854		21PV 4954	$\begin{gathered} \text { Red/Yellow } \\ \text { IP65 } \\ 21393313 \end{gathered}$	

(1) Default connected device (see "Connection of poles" page 24).
(2) Standard handle.
(3) Door mounted standard.

Load break switches for photovoltaic applications
from 25 to 40 A, up to 1000 VDC

Accessories

Direct operation handle

Use
The direct operation conversion kit requires an additional 4 mm distance on each side of the 2 and 3 pole device.

Rating (A)	Handle colour	Type of locking	Handle	45 mm modular DIN front plate	Reference
$25 \ldots 40$	Blue	-	MC0 type	yes	$21190012^{(1)}$
$25 \ldots 40$	Blue	1 padlock $\varnothing 5 \mathrm{~mm}$	MC01 type	yes	21191012

(1) Standard handle.

2 MPPT 600 V					
Rating (A)	Handle colour	Type of locking	Handle	45 mm modular DIN front plate	Reference
30	Blue	-	MCO type	yes	21190012
30	Blue	1 padlock $\varnothing 5 \mathrm{~mm}$	MC01 type	yes	21191012
40	Blue	1 padlock $\varnothing 5 \mathrm{~mm}$	MC01 type	yes	21191412

2 MPPT 1000 V					
Rating (A)	Handle colour	Type of locking	Handle	45 mm modular DIN front plate	Reference
$25 \ldots 40$	Blue	1 padlock $\varnothing 5 \mathrm{~mm}$	MC01 type	yes	21191412

MCO handle

Door interlocked external operation handle

Use
The external control will allow the operator to safely disconnect and isolate the solar strings prior to any intervention.

External controls are user-friendly and adapted to meet requirements of residential installations, large roofs and ground-based generators.

DIN-rail or back plate mounting					
Rating (A)	Handle	Handle colour	Type of locking	External IP ${ }^{(1)}$	Reference
25... 40	MC1 type	Black	3 padlocks $\varnothing 9 \mathrm{~mm}$	IP65	$211933122^{(2)(3)}$
25... 40	MC1 type	Red/Yellow	3 padlocks $\varnothing 9 \mathrm{~mm}$	IP65	$21193313^{(3)}$
$25 . . .40$	S000 type	Black	3 padlocks Ø6 mm	IP55	14615111
25... 40	S000 type	Black	3 padlocks $\emptyset 6 \mathrm{~mm}$	IP65	14635111
25... 40	S000 type	Red/Yellow	3 padlocks $\varnothing 6 \mathrm{~mm}$	IP65	14645111

(1) IP: protection degree according to	(2) Standard handle.
IEC 60529 standard.	(3) No padlocking.

Door mounting
 Rating (A) Handle Handle colour Type of locking External IP(1) Reference $25 \ldots 40$ MC2 type Blue - IP55 $21290112^{(2)}$

(1) IP: protection degree according to IEC 60529 standard.
(2) Standard handle

"Quick Fix" door mounting
 Rating (A) Handle Handle colour Type of locking External IP(1) Reference $25 \ldots 40$ MC3 type Blue 1 padlock $\varnothing 5 \mathrm{~mm}$ IP65 $2139 \mathbf{1 2 1 2 2)}^{(2)}$ $25 \ldots 40$ MC4 type Black 3 padlocks $\varnothing 9 \mathrm{~mm}$ IP65 21393312 $25 \ldots 40$ MC4 type Red/Yellow 3 padlocks $\varnothing 9 \mathrm{~mm}$ IP65 21393313

Shaft for external handle

Use
MC1 and S000 shafts can be adjusted and
cut depending on the need.

Shaft length

MC1 type:

- 165 mm (ajustable up to 177 mm)

SOOO type:

- 150 mm
- 200 mm
- 320 mm

DIN-rail or back plate mounting				
Rating (A)	Handle	Dimension X(mm)	Length (mm)	Reference
$25 \ldots 40$	MC1 type	$249 \ldots 259$	165	21070516
$25 \ldots 40$	S000 type	$234 \ldots 246$	150	21070515
$25 \ldots 40$	S000 type	$284 \ldots 496$	200	21070520
$25 \ldots 40$	S000 type	$404 \ldots 416$	320	21070532

Terminal shrouds

Use
Top or bottom protection against direct contact with the terminals or connection parts. 1 and 3 poles are available.
The SIRCO MC PV load break switch is prebridged. Terminal covers are mounted on the top or bottom free space of the device.
Possibility to assemble a terminal shroud on the bridge side by removing the insulating material of the series connection bar (irreversible step).

SIRCO MC PV IEC 60947-3

Load break switches for photovoltaic applications
from 25 to 40 A, up to 1000 VDC

Accessories (continued)

Auxiliary contact

Use
These auxiliary contacts signalling position 0 and 1 can be normally open or normally closed contacts. They can be fixed on the left or right side of the switch body and/or on the power additional pole.

Rating (A)	Type of mounting	Contact(s)	Contact type	Reference
$25 \ldots 40$	DIN-rail / back plate mounted	1 contact	NO + NC	21190001
$25 \ldots 40$	Door mounted	1 contact	NO + NC	21290001

Characteristics according to IEC 60947-5-1

Connections

Min./max cross-sections: $1 \mathrm{~mm}^{2} / 4 \mathrm{~mm}^{2}$ Tightening torque: 0.6 Nm

			Operating current $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$		
			230 VAC	400 VAC	690 VAC
Rating (A)	Contact type	Thermal current $\mathrm{I}_{\text {th }}(\mathrm{A})$	AC-15	AC-15	AC-15
$25 \ldots 40$	NO + NC	16	6	4	2

Auxiliary contacts configurations

Characteristics according to IEC 60947-3
25 to 40 A

Rated current	25 A	30 A	40 A
Thermal current $\mathrm{Ith}_{\text {th }}$ at $40^{\circ} \mathrm{C}(\mathrm{A})$	25	30	40
Thermal current at $50^{\circ} \mathrm{C}(\mathrm{A})$		25	30
Thermal current at $60^{\circ} \mathrm{C}(\mathrm{A})$	25	30	
Rated insulation voltage $\mathrm{Ui}_{\mathrm{i}} \mathrm{M}$	1000	1000	40
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}(\mathrm{kV})$	8	8	8

Rated operational currents $\mathrm{I}_{e}(\mathrm{~A})$

Rated voltage	Utilisation category	Circuit type	Number of poles of the device	Number of pole(s) in series per polarity	(A)	(A)	(A)
600 VDC	DC-21 B	Single PV circuit	$2 P$	1 P + and 1 P -	-	30	-
600 VDC	DC-21 B	Single PV circuit	3 P	2 P + and 1 P -	-	-	40
600 VDC	DC-21 B	Dual PV circuit	4 P	$2 \times(1 \mathrm{P}+$ and $1 P-$)	-	30	-
600 VDC	DC-21 B	Dual PV circuit	6 P	$2 \times(2 P+$ and $1 P-)$	-	-	40
1000 VDC	DC-21 B	Single PV circuit	3 P	$2 P$ + and $1 P$ -	25	-	-
1000 VDC	DC-21 B	Single PV circuit	4 P	$2 P$ + and $2 P$ -	-	-	40
1000 VDC	DC-21 B	Dual PV circuit	6 P	$2 \times(2 \mathrm{P}+$ and 1 P -)	25	-	-
1000 VDC	DC-21 B	Dual PV circuit	8 P	$2 \times(2 \mathrm{P}+$ and $2 \mathrm{P}-)$	-	-	40

Connection

Minimum Cu cable cross-section	1.5	1.5	1.5
Maximum Cu cable cross-section (mm^{2})	10	10	10
Tightening torque mini / maxi (Nm)	2	2	2
Mechanical characteristics			
Durability (number of operating cycles)	30000	30000	30000
Operating torque (Nm)	0.8	0.8	0.8
Weight of a 2 pole PV device (kg)	0.110	0.110	-
Weight of a 3 pole PV device (kg)	0.125	0.125	0.125
Weight of a 2 pole PV and 2 pole AC device (kg)	0.180	0.180	-
Weight of a 3 pole PV and 2 pole AC device (kg)	-	-	0.195
Weight of a 4 pole PV device (kg)	-	-	0.160
Weight of a 4 pole PV device, dual PV circuit (kg)	0.145	0.145	-
Weight of a 6 pole PV device, dual PV circuit (kg)	-	-	0.250
Weight of an 8 pole PV device, dual PV circuit (kg)	-	-	0.320

Dimensions
DIN-rail mounting - Direct operation

DIN-rail mounting - External operation

Door mounting

1. Terminal shrouds 1 P
2. Terminal shrouds $3 P$.
3. Auxiliary contact.
4. AC power pole.
5. AC or PV power pole.
A. MC2 handle.
from 25 to 40 A, up to 1000 VDC

Dimensions

"Quick Fix" door mounting

1. Terminal shrouds 1 P .
2. Terminal shrouds $3 P$.
3. Auxiliary contact

4. AC power pole.
5. AC or PV power pole.

A. MC3 handle.
B. MC4 handle.

2 MPPT - 40 A - 600 VDC and 25 and 40 A - 1000 VDC - DIN-rail mounting - Direct operation

1. Terminal shrouds $3 P$.
2. Auxiliary contact.

A. MC01 handle.

DIN-rail mounting - External operation

1. Terminal shrouds 3P.

A. MC1 handle.

Dimensions for external handles
DIN-rail or back plate mounting
Handle type

Door mounting
Handle type
from 25 to 40 A, up to 1000 VDC

Poles connections
Switching of polarities + and -

Direct operation						
Rating	Single PV circuit		PV and AC circuit		Dual PV circuit	
25 A - 600 VDC	21PV 2102		21PV 2162		21PV 5102	
40 A - 600 VDC 25 A-1000 VDC	21PV 3124 21PV 3722		21PV 3184		21PV 6124 21PV 6722	
$40 \mathrm{~A}-1000 \mathrm{VDC}$	21PV 4754				21PV 8154	

Switching of polarities + and -
Single PV circuit \quad PV and AC circuit

Door mounting				
Rating	Single PV circuit	PV and AC circuit		Dual PV circuit
25 A - 600 VDC	21PV 2202 21PV 2302	21PV 2262 21PV 2362		21PV 5202 21PV 5302
$\begin{gathered} 40 \text { A - } 600 \text { VDC } \\ 25 \text { A - } 1000 \text { VDC } \end{gathered}$	21PV 3224 21PV 3324 21PV 3822 21PV 3922	21PV 3284 21PV 3384		
40 A - 1000 VDC	21PV 4854 21PV 4954			

SIRCO MC PV UL508i

Load break switches for photovoltaic applications from 25 to 45 A, up to 1000 VDC

new

SIRCO MC PV 25 A - 1000 VDC DIN-rail mounting

Function
SIRCO MC PV are DC load break switches. They make and break under load conditions and provide optimum safety isolation for any PV circuit.

Advantages

Compact
Thanks to its compact design, the space needed within the combiner box or the solar inverter is greatly reduced.

High breaking capacity up to 1000 VDC

- Making and breaking capacity under load conditions up to 1000 VDC.
- Specific photovoltaic test beyond requirements of UL508i and IEC 60947-3 standard.

Safety

- Bridging bars are factory fitted for easier, quicker and safer connection.
- Direct access to connection terminals for adequate tightening.

Strong points

$>$ Compact
> High breaking capacity up to 1000 VDC
> Safety
> Easy mounting

Conformity to standards

```
> UL508i
\[
>\text { IEC 60947-3 }
\]
```


Approvals and certifications ${ }^{(1)}$

(CCC)

(1) Product reference on request.

Multi-circuit switching

- The SIRCO MC PV for dual circuits (2 MPPT: Maximum Power Point Tracking) enables connection of two independent photovoltaic circuits to a single switch in order to reduce the costs of the global solution.

Completely isolate the inverter within one operation

- The SIRCO MC PV with two additional AC poles can be integrated into the inverter to provide complete and simultaneous isolation of the PV and AC circuits. This improves safety and reduces the overall product size.

What you need to know

For grounded or ungrounded networks:
It is possible to use the SIRCO MC PV in both network systems, either switching one or both polarities.

SIRCO MC PV UL508i
Load break switches for photovoltaic applications
from 25 to 45 A, up to 1000 VDC

References
SIRCO MC PV 600 VDC

Rating (A)	Circuit type	No. of poles	Switch body	Direct handle	External handle	Shaft for external handle	Auxiliary contact
25 A	Single PV circuit	2 P	21PV 2102-UL	$\begin{gathered} \text { MC01 type } \\ \text { Blue } \\ 21191012 \end{gathered}$	$\begin{gathered} \text { S00 type } \\ \text { Black } \\ 4.4 \mathrm{X} \\ 147 \mathrm{D} 0111^{(1)} \end{gathered}$	$\begin{gathered} \text { S00 type } \\ 265 \mathrm{~mm} \\ 21070517 \end{gathered}$	$\begin{gathered} 1 \text { contact } \\ \text { NC+NO } \\ 21100001 \end{gathered}$
	Dual PV circuit	4 P	21PV 5102-UL				
45 A	Single PV circuit	4 P	21PV 4144		Red $4.4 x$		
	Dual PV circuit	8 P	21PV 8144	$\begin{gathered} \text { MC01 type } \\ \text { Blue } \\ 21191412 \end{gathered}$	147R $0111^{(1)}$		

(1) Door interlocking.

SIRCO MC PV 1000 VDC

Rating (A)	Circuit type	No. of poles	Switch body	Direct handle	External handle	Shaft for external handle	Auxiliary contact
32 A	Single PV circuit	4 P	21PV 4144	$\begin{gathered} \text { MC01 type } \\ \text { Black } \\ 21191012 \end{gathered}$	$\begin{gathered} \text { S00 type } \\ \\ \text { Black } \\ 4.4 X \\ \text { 147D } 0111^{(1)} \end{gathered}$	S00 type$\begin{gathered} 265 \mathrm{~mm} \\ 21070517 \end{gathered}$	$\begin{gathered} 1 \text { contact } \\ \text { NC+NO } \\ 21100001 \end{gathered}$
	Dual PV circuit	8 P	21PV 8144	MC01 type Black 21191412	$\begin{gathered} \text { Red } \\ 4.4 \mathrm{X} \\ \text { 147R } 0111^{(1)} \end{gathered}$		

(1) Door interlocking.

Accessories

Direct operation handle

Use
The direct operation conversion kit requires an additional 4 mm distance on each side of the 2 and 3 pole device.

Rating (A)	Handle colour Blue	Type of locking	Handle type	45 mm modular DIN front plate	Reference
$25 \ldots 45$	-	MC0	yes	$21190012^{(1)}$	
$25 \ldots 45$	Blue	1 padlock $\varnothing 5 \mathrm{~mm}$	MC01	yes	21191012

(1) Standard handle.

2 MPPT 600 V					
Rating (A)	Handle colour	Type of locking	Handle type	45 mm modular DIN front plate	Reference
25	Blue	-	MCO	yes	21190012
25	Blue	1 padlock $\varnothing 5 \mathrm{~mm}$	MC01	yes	21191012
45	Blue	1 padlock $\varnothing 5 \mathrm{~mm}$	MC01	yes	21191412

External operation handle

Use

The external control will allow the operator to safely disconnect and isolate the solar strings prior to any intervention.

External controls are user-friendly and adapted to meet requirements of residential installations, large roofs and ground-based generators.

S00 handle

MC1 handle

Shaft for external handle

Use
The shaft can be adjusted and cut depending on the need.

Shaft length
Device + shaft:

- 265 mm

DIN-rail or back plate mounting	Device + shaft Length (mm)	Reference
Rating (A)	265	$21070517^{(1)}$
$25 \ldots 45$		

(1) Shaft for door interlocking

Terminal shrouds

Use
Top or bottom protection against direct contact with the terminals or connection parts. 1 and 3 poles are available.
The SIRCO MC PV load break switch is prebridged. Terminal covers are mounted on the top or bottom free space of the device.
Possibility to assemble a terminal shroud on the bridge side by removing the insulating material of the series connection bar (irreversible step).

Terminal shrouds 1 pole

Terminal shrouds 3 pole

For SIRCO MC PV				
Rating (A)	Type of mounting	No. of poles	Position	Reference
$25 \ldots 45$	DIN-rail	$1 P$	top or bottom	21941004
$25 \ldots 45$	DIN-rail	$3 P$	top or bottom	21943004

SIRCO MC PV UL508i
Load break switches for photovoltaic applications
from 25 to 45 A, up to 1000 VDC

Characteristics

as per standard UL508i

General use rating with 200\% overload extra test

Rated voltage	Number of poles of the device	Number of PV circuits	(A)	(A)
600 VDC	2 P	1	25	-
600 VDC	4 P	1	-	45
600 VDC	$2 \times 2 \mathrm{P}$	2	25	-
600 VDC	$2 \times 4 \mathrm{P}$	2	-	45
1000 VDC	4 P	1	-	32
1000 VDC	$2 \times 4 \mathrm{P}$	2	-	32

Short-circuit capacity at 600 VDC

Prospective short-circuit current (kA rms)	5	5
Type of fuse	gPV	gPV
Associated fuse rating (A)	25	

Short-circuit capacity at 1000 VDC
Prospective short-circuit current (kA rms)
Connection terminals

Min. connection wire range / AWG (solid or stranded)	14-7	14-3
Mechanical characteristics		
Durability (number of operating cycles)	30000	30000
Tightening torque (Nm)	2	2

as per standard IEC 60947-3

Rated current			25 A	45 A
Thermal current $\mathrm{I}_{\text {th }}$ at $40^{\circ} \mathrm{C}$ (A)			25	45
Thermal current at $50^{\circ} \mathrm{C}$ (A)			25	45
Thermal current at $60^{\circ} \mathrm{C}$ (A)			25	45
Rated insulation voltage $\mathrm{U}_{\mathrm{i}}(\mathrm{M})$			1000	1000
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$ (kV)			8	8
Rated operational currents $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$				
Rated voltage	Number of poles of the device	Number of PV circuits	(A)	(A)
600 VDC	2 P	1	30	-
600 VDC	4 P	1	-	40
600 VDC	$2 \times 2 \mathrm{P}$	2	30	-
600 VDC	$2 \times 4 \mathrm{P}$	2	-	40
1000 VDC	2 P	1	10	-
1000 VDC	4 P	1	-	40
1000 VDC	$2 \times 2 \mathrm{P}$	2	10	-
1000 VDC	$2 \times 4 \mathrm{P}$	2	-	40

Dimensions
DIN-rail mounting - Direct operation

1. Terminal shrouds 1 P .
2. Terminal shrouds $3 P$.
3. Auxiliary contact.

4. AC power pole.
5. AC or PV power pole.

A. MCO handle
B. MC01 handle

DIN-rail mounting - External operation

3. Auxiliary contact.
5. AC or PV power pole.
A. MC1 handle
2. Terminal shrouds 3P.
4. AC power pole.

2 MPPT - 45 A - 600 VDC and 32 A - 1000 VDC - DIN-rail mounting - Direct operation

1. Terminal shrouds $3 P$.
2. Auxiliary contact.

A. MC01 handle.

Load break switches for photovoltaic applications
from 25 to 45 A, up to 1000 VDC

Dimensions (continued)
DIN-rail mounting - External operation

1. Terminal shrouds 3P.

A. MC1 handle.

Dimensions for external handles
DIN-rail or back plate mounting
Handle type

Handle type
S00 type
Direction of operation

Poles connections
Switching of polarities + and - (1)

Rating	Single PV circuit	Dual PV circuit
25A-600 VDC	21PV 2102-UL	21PV 5102-U
$\begin{aligned} & \hline 45 \mathrm{~A}-600 \mathrm{VDC} \\ & 32 \mathrm{~A}-1000 \mathrm{VDC} \end{aligned}$	21PV 4144	21PV 8144

(1) For grounded systems, single polarity switching, a bridge shall be added.

SIRCO MV PV

Load break switches for photovoltaic applications for use up to 1000 VDC from 63 to 80 A

SIRCO MV PV 1000 V - 80 A
direct operation

Function

SIRCO M V PV are manually operated multipolar load break switches. They make and break under load conditions and provide optimum safety isolation for any PV circuit.

Advantages

Modular device
SIRCO MV PV are devices which are DIN rail or backplate mountable and can be integrated into a modular panel with a 45 mm front cut-out.

Patented switching technology
SIRCO MV PV with benefit from proven breaking technology based on a system of double break contacts with arc extinguishing chambers.

Strong points

> Modular device
> Patented switching technology
> Performance - 1000 VDC
$>$ IEC 60364-4-410
$>$ IEC 60364-7-712

```
> IEC 60947-3
> IEC 60947-3

Approvals and certifications

\section*{(CC)}
(1) Product reference on request.

References
SIRCO MV PV 1000 VDC - DIN rail or back plate mounting
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Rating \\
(A)
\end{tabular} & Circuit type & No. of poles & Switch body & Direct handle & External front handle & Shaft for external front handle & Auxiliary contact & Bridging bar \\
\hline 63 A & \multirow{2}{*}{Single PV circuit} & 4 P & 22PV 4106 & \multirow{2}{*}{MOb type Blue \(22995042^{(1)}\) M0 type Blue 22995022} & SO type Black IP55 \(14910111^{(1)(2)}\) Black IP65 \(14930111^{(2)}\) Red / Yellow IP65 \(14940111^{(2)}\) & \[
\begin{gathered}
\text { SO type } \\
150 \mathrm{~mm} \\
14090615 \\
200 \mathrm{~mm} \\
14090620 \\
320 \mathrm{~mm} \\
14090632
\end{gathered}
\] & \[
\begin{gathered}
1 \text { contact } \\
\text { NC+NO } \\
22990001^{(3)} \\
1 \text { contact } 2 \mathrm{NC}^{2}
\end{gathered}
\] & \\
\hline 80 A & & 4 P & 22PV 4108 & & S1 type Black IP55 \(14112111^{(2)}\) Black IP65 \(14132111^{(2)}\) Red / Yellow IP65 \(14142111^{(2)}\) & \[
\begin{gathered}
\text { S1 type } \\
200 \mathrm{~mm} \\
14010620 \\
320 \mathrm{~mm} \\
14010632 \\
400 \mathrm{~mm} \\
14010640
\end{gathered}
\] & \begin{tabular}{l}
1 contact NO 39990701 \\
1 contact NC 39990702
\end{tabular} & 22092016 \\
\hline
\end{tabular}
(1) Standard.
(2) Defeatable handle.
(3) Signalling contact only.

\section*{Accessories}

\section*{Direct operation handle}
\begin{tabular}{l|c|c|}
\hline \multicolumn{3}{|c|}{ M0b type direct operation handle } \\
Rating (A) & Handle colour & Reference \\
\hline \(63 \ldots 80\) & Blue & \(22995042^{(1)}\) \\
\hline (1) Standard. \\
\hline \multicolumn{3}{l|}{ Compact M0 type direct operation handle } \\
Rating (A) & Handle colour & Reference \\
\hline \(63 \ldots 80\) & Blue & 22995022 \\
\hline
\end{tabular}

?
MOb handle
MO handle

Load break switches for photovoltaic applications
for use up to 1000 VDC from 63 to 80 A

\section*{Accessories}

\section*{Door interlocked external operation handle}

Use
Door interlocked external operation handles include an escutcheon, are padlockable and must be utilised with an extension shaft. In a combiner box, located close to the solar cell strings, or located close to the inverter, we recommend to use a door interlocked external handle for safety.

Example
The locking function of the enclosure in the "ON" position will force the operator to safely disconnect and isolate the solar cell strings prior to any intervention.
Opening the door when the switch is on "ON" position is possible by defeating the interlocking function with the use of a tool (authorised persons only). The interlocking function is restored when the door is re-closed.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{S0 type handle - Front operation I-0} \\
\hline Rating (A) & Handle type & Handle colour & External IP \({ }^{(1)}\) & Reference \\
\hline 63 ... 80 & SO & Black & IP55 & \(14910111^{(2)}\) \\
\hline \(63 . . .80\) & SO & Black & IP65 & \(14930111^{(2)}\) \\
\hline 63 ... 80 & SO & Red/Yellow & IP65 & \(14940111^{(2)}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{S1 type handle - Front operation I-0} \\
\hline Rating (A) & Handle type & Handle colour & External IP \({ }^{(1)}\) & Reference \\
\hline \(63 . .80\) & S1 & Black & IP55 & \(14112111^{(2)}\) \\
\hline \(63 . . .80\) & S1 & Black & IP65 & \(14132111^{(2)}\) \\
\hline 63 ... 80 & S1 & Red/Yellow & IP65 & \(14142111^{(2)}\) \\
\hline
\end{tabular}
(1) IP: protection degree according to IEC 60529 standard.
(2) Defeatable handle.

\section*{Shaft for external handle}

Use
Standard lengths: Other lengths: please consult us.
- 150 mm
- 200 mm
\(-320 \mathrm{~mm}\)
- 400 mm


Shaft for S0 type handle for SIRCO MV PV 63 ... 80 A


\section*{Auxiliary contact}

Use M type
Signalisation of positions 0 and I by NO+NC or 2 NO auxiliary contacts. They can be mounted on the right side on the SIRCO MV PV. Up to 2 auxiliary contact modules can be installed.
\begin{tabular}{l|c|c|c|}
\hline M type \\
Rating (A) & Contact(s) & Contact type & Reference \\
\hline \(63 \ldots 80\) & 1 contact & NO + NC & \(22990001^{(1)}\) \\
\hline \(63 \ldots 80\) & 1 contact & 2 NC & \(22990011^{(1)}\) \\
\hline
\end{tabular}
(1) Signalling contact only.
\begin{tabular}{l|c|c|c|}
\hline U type \\
Rating (A) & Contact(s) & Contact type & Reference \\
\hline \(63 \ldots 80\) & 1 AC & NO & 39990701 \\
\hline \(63 \ldots 80\) & 1 AC & NC & 39990702 \\
\hline
\end{tabular}


M type
Auxiliary contacts configurations for SIRCO MV PV
1. Maximum 2 "U" type auxiliary contacts
2. Maximum 2 " M " type auxiliary contact modules

\section*{Terminal shrouds}

Use
Top and bottom protection against direct contact with the connection parts (set of 2 units).

\section*{Advantage}

Perforations allow remote thermographic inspection without the need to remove the shrouds.
The terminal shrouds also provide phase separation.
\begin{tabular}{l|c|c|c|}
\hline \multicolumn{4}{|c|}{ For SIRCO MV PV } \\
Rating (A) & No. of poles & Position & Reference \\
\hline \(63 \ldots 80\) & 4 P & top and bottom & 22944016 \\
\hline
\end{tabular}


\section*{Bridging bars for connecting poles in series}

Use
The bridging bars facilitate the connection of poles in series, allowing the below
configurations:
- Bottom/Bottom
- Top/Top
- Bottom /Top
- Top/Bottom

Connection diagrams, see "Pole connections in series" page 39.
\begin{tabular}{|l|c|c|}
\hline For SIRCO MV PV & \\
Rating (A) & Pack & Reference \\
\hline \(63 \ldots 80\) & 1 piece & 22090016 \\
\hline \(63 \ldots 80\) & 2 pieces & 22092016 \\
\hline
\end{tabular}

\section*{SIRCO MV PV}

Load break switches for photovoltaic applications
for use up to 1000 VDC from 63 to 80 A

Characteristics according to IEC 60947-3
63 to 80 A
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Rated current} & 63 A & 80 A \\
\hline \multicolumn{5}{|l|}{Thermal current \(\mathrm{Ith}^{\text {at }} 40^{\circ} \mathrm{C}\) (A)} & 63 & 80 \\
\hline \multicolumn{5}{|l|}{Thermal current \(\mathrm{Ith}^{\text {at }} 50^{\circ} \mathrm{C}\) (A)} & 63 & 80 \\
\hline \multicolumn{5}{|l|}{Thermal current \(\mathrm{Ith}_{\text {th }} 60^{\circ} \mathrm{C}(\mathrm{A})\)} & 63 & 80 \\
\hline \multicolumn{5}{|l|}{Rated insulation voltage \(\mathrm{U}_{\mathrm{i}}(\mathrm{M})\)} & 1000 & 1000 \\
\hline \multicolumn{5}{|l|}{Rated impulse withstand voltage \(\mathrm{U}_{\text {imp }}\) (kV)} & 8 & 8 \\
\hline \multicolumn{7}{|l|}{Rated operational currents \(\mathrm{I}_{\mathrm{e}}(\mathrm{A})\)} \\
\hline Rated voltage & Utilisation category & Circuit type & No. of poles & Number of pole(s) in series per polarity & (A) & (A) \\
\hline \(1000 \mathrm{VDC}^{(1)}\) & DC-21 B & Single PV circuit & 4 P & 2 P + and 2 P - & 63 & 80 \\
\hline \multicolumn{7}{|l|}{Short-circuit capacity at 1000 VDC} \\
\hline \multicolumn{5}{|l|}{Rated short-time withstand current 1s. 1 cw (kA rms)} & 5 & 5 \\
\hline \multicolumn{5}{|l|}{Prospective short-circuit making capacity without fuses \(\mathrm{I}_{\mathrm{cm}}\) (kA peak)} & 5 & 5 \\
\hline \multicolumn{7}{|l|}{Connection} \\
\hline \multicolumn{5}{|l|}{Maximum Cu rigid cable cross-section ( \(\mathrm{mm}^{2}\) )} & 70 & 70 \\
\hline \multicolumn{5}{|l|}{Tightening torque min (Nm)} & 4 & 4 \\
\hline \multicolumn{5}{|l|}{Tightening torque max (Nm)} & 5,5 & 5,5 \\
\hline \multicolumn{7}{|l|}{Mechanical characteristics} \\
\hline \multicolumn{5}{|l|}{Operating effort (Nm)} & 4,2 & 4,2 \\
\hline \multicolumn{5}{|l|}{Weight of a 3 pole device (kg)} & 0,7 & 0,7 \\
\hline \multicolumn{5}{|l|}{Weight of a 4 pole device (kg)} & 0,9 & 0,9 \\
\hline
\end{tabular}
(1) Photovoltaic load break swiches SIRCO MV PV are subject to overvoltage test conditions which are \(5 \%\) higher than the rated voltage. They can therefore be used at 1050 VDC in non-permanent operating conditions.

Dimensions

\section*{SIRCO MV PV 63 to 80 A}

Direct front operation

A. 4 poles
B. S0 type handle
C. S1 type handle

External front operation

1. Maximum 2 " \(M\) " type auxiliary contact modules
2. Maximum 2 "U" type auxiliary contacts

Dimensions for external handles
SIRCO MV PV 63 to 80 A
\begin{tabular}{l} 
Handle type \\
\hline SO type \\
Direction of operation
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Handle type & Front operation Direction of operation & Door drilling \\
\hline S1 type &  & \begin{tabular}{l}
IP55 with 2 fixing clips \\
P65 with 4 fixing screws
\end{tabular} \\
\hline
\end{tabular}

Pole series connection \({ }^{(1)}\)

4 poles - bottom / bottom

(1) Other connections: refer to mounting instructions.

Bridging bars 63 to 80 A


\section*{SIRCO PV IEC 60947-3}

\section*{Load break switches for photovoltaic applications from 100 to 3200 A, up to 1500 VDC}

\section*{new}


\section*{Function}

SIRCO PV are manually operated multipolar load break switches, dedicated to photovoltaic application, able to make and break under load up to 500 VDC per poles.
These switches are extremely durable and are tested and approved for use in the most demanding applications.
They are available in \(2,3,4,6\) and 8 poles for all configurations from one to 4 circuits, in order to suit all your requirements.

\section*{Advantages}

Optimise your investment
High switching performances means less poles in series to reach the operating voltage, consequently:
- Less bridging bars required, limiting installation costs and time.
- Less heat dissipation, making it possible to be installed in a smaller enclosure.

Guarantee safety over time
SIRCO PV are extremely robust products, with all casings made from fiber glass reinforced polyester materials that allows:
- High mechanical withstand.
- High stability to temperatures (RTI of \(130^{\circ} \mathrm{C}\) ).
- High dielectric performance (high CTI / tested according to ASTM D 2303).

Take advantage of an innovative design
The Sirco PV are able to operate on and off load up to 500 VDC per poles, providing extremely compact solutions:
- 1500 VDC on a 3 poles switch.
- Up to 4 circuits each at 1000 VDC on an 8 poles switch.

Reliability and performance
Our range of SIRCO PV load break switches
is compliant with UL98B and IEC 60947-3 standards and have been tested above standards expectation, ensuring no critical current.
They are as well able to withstand 10 kA , 50 ms , allowing the use of any overcurrent protection device for line protection.


\section*{Strong points}
\(>\) Patented switching technology up to 1500 VDC/pole
> Positive break indication
> Up to 1500 VDC as per IEC 60947-3
\(>\) Up to 4 circuits on a single switch

\section*{Conformity to standards}
```

> IEC 60947-3
$>$ IEC 60364-7-712
$>{\text { UL } 98 B^{(1)}}^{(1)}$

```
(1) See page 58.


Approvals and certifications \({ }^{(1)}\)

(1) Product reference on request.

SIRCO PV IEC 60947-3
Load break switches for photovoltaic applications
from 100 to 3200 A, up to 1500 VDC

Typical PV architecture
The SIRCO PV range provides safe disconnection and isolation at all levels of your PV installation.


The SOCOMEC solutions
LEVELOF INSTALATION

SIRCO PV IEC 60947-3
Load break switches for photovoltaic applications
from 100 to 3200 A, up to 1500 VDC

References
1000 VDC - Back plate mounting
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Rating (A) & Frame size & Number of poles & Switch body & Direct handle & External handle & Shaft for external handle & Quantity to be ordered to connect 2 poles in series \\
\hline \multicolumn{8}{|c|}{1 PV circuit} \\
\hline 100 A & B4 & 2 P & 26PV 2010 & \multirow{8}{*}{\[
\begin{gathered}
\text { J1 type } \\
\text { Black } \\
11121111 \\
\text { Red } \\
11131111
\end{gathered}
\]} & \multirow{8}{*}{\begin{tabular}{l}
S2 type \({ }^{(1)}\) Black IP55 14212111 \\
Black IP65 \\
14232111 \\
Red IP65 \\
14242111
\end{tabular}} & \multirow{8}{*}{\[
\begin{gathered}
200 \mathrm{~mm} \\
1400 \mathrm{lO20} \\
320 \mathrm{~mm} \\
1400 \mathrm{1032} \\
400 \mathrm{~mm} \\
1400 \mathrm{lO}
\end{gathered}
\]} & \multirow[t]{4}{*}{} \\
\hline 160 A & B4 & \(2 P\) & 26PV 2016 & & & & \\
\hline 250 A & B4 & \(2 P\) & 26PV 2025 & & & & \\
\hline 315 A & B4 & \(2 P\) & 26PV 2031 & & & & \\
\hline 400 A & B4 & 4 P & 26PV 4040 & & & & \multirow{2}{*}{\[
\begin{gathered}
2 x \\
26090025
\end{gathered}
\]} \\
\hline 500 A & B4 & 4 P & 26PV 4050 & & & & \\
\hline 630 A & B5 & 4 P & 26PV 4063 & & & & \\
\hline 800 A & B5 & 4 P & 26PV 4080 & & & & \\
\hline 1250 A & B6 & 4 P & 26PV 4120 & \multirow{3}{*}{C2 type Black 27997012 Red 27997013} & \multirow[t]{2}{*}{\begin{tabular}{l}
S4 type \({ }^{(1)}\) Black IP65 14433111 \\
Red IP65 \\
14443111
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
200 \mathrm{~mm} \\
1401 \mathrm{l520} \\
320 \mathrm{~mm} \\
1401 \mathrm{l532} \\
400 \mathrm{~mm} \\
1401 \mathrm{l520}
\end{gathered}
\]} & \[
\begin{gathered}
1 x \\
26091100
\end{gathered}
\] \\
\hline 2000 A & B7 & 4 P & 26PV 4200 & & & & \[
\begin{gathered}
2 x \\
26091200
\end{gathered}
\] \\
\hline 3200 A & B8 & 4 P & please consult us & & V1 type Black IP65 27997145 & \[
\begin{gathered}
320 \mathrm{~mm} \\
27993018 \\
450 \mathrm{~mm} \\
27993019
\end{gathered}
\] & please consult us \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 100 A & \(B 4{ }_{\text {ds }}\) & 4 P & 26PV 5010 & & \multirow{7}{*}{S2 type \({ }^{(1)}\) Black IP55 14212111 Black IP65 14232111 Red IP65 14242111} & \multirow{7}{*}{\[
\begin{gathered}
200 \mathrm{~mm} \\
1400 \mathrm{lO20} \\
320 \mathrm{~mm} \\
14001032 \\
400 \mathrm{~mm} \\
1400 \mathrm{lO}
\end{gathered}
\]} & \multirow{4}{*}{-} \\
\hline 160 A & B4 \({ }_{\text {ds }}\) & 4 P & 26PV 5016 & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { J2 type } \\
\text { Black } \\
11221111 \\
\text { Red } \\
1123111
\end{gathered}
\]} & & & \\
\hline 250 A & \(B 4{ }_{\text {ds }}\) & 4 P & 26PV 5025 & & & & \\
\hline 315 A & \(B 4{ }_{\text {ds }}\) & 4 P & 26PV 5031 & & & & \\
\hline 400 A & B5 & 4 P & 27PV 4032 & J1 type Black & & & \\
\hline 500 A & B5 & 4 P & 27PV 4039 & \[
\begin{aligned}
& \text { Red } \\
& 11131111
\end{aligned}
\] & & & \\
\hline 630 A & \(B 5_{\text {DS }}\) & 8 P & 26PV 8063 & \[
\begin{gathered}
\text { J2 type } \\
\text { Black } \\
11221111 \\
\text { Red } \\
11231111
\end{gathered}
\] & & & \[
\begin{gathered}
1 \mathrm{x} \\
26090080
\end{gathered}
\] \\
\hline 800 A & \(B 6{ }_{\text {DS }}\) & 8 P & 26PV 8080 & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { C2 type } \\
\text { Black } \\
27997012 \\
\text { Red } \\
27997013
\end{gathered}
\]} & \multirow{3}{*}{V1 type Black IP65 27997145} & \multirow{3}{*}{\[
\begin{gathered}
320 \mathrm{~mm} \\
41993018
\end{gathered}
\]} & \multirow{2}{*}{\[
\begin{gathered}
1 \mathrm{x} \\
2609 \mathrm{~d} 1100
\end{gathered}
\]} \\
\hline 1250 A & \(B 6{ }_{\text {ds }}\) & 8 P & 26PV 8120 & & & & \\
\hline 2000 A & B7 \({ }_{\text {ds }}\) & 8 P & 26PV 8200 & & & & \[
\begin{gathered}
1 \mathrm{x} \\
2609 \mathrm{1200}
\end{gathered}
\] \\
\hline \multicolumn{8}{|c|}{4 PV circuits} \\
\hline 275 A & B5 \({ }_{\text {DS }}\) & 8 P & 27PV 8026 & J2 type & S2 type \({ }^{(1)}\) Black IP55 & \[
\begin{gathered}
200 \mathrm{~mm} \\
14001020
\end{gathered}
\] & \\
\hline 400 A & B5 \({ }_{\text {Ds }}\) & 8 P & 27PV 8032 & \[
\begin{gathered}
11221111 \\
\text { Red }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Black IP65 } \\
& 14232111
\end{aligned}
\] & \[
\begin{gathered}
320 \mathrm{~mm} \\
14001032
\end{gathered}
\] & \[
\begin{gathered}
4 \mathrm{x} \\
27090045
\end{gathered}
\] \\
\hline 500 A & B5 \({ }_{\text {ds }}\) & 8 P & 27PV 8039 & 11231111 & \[
\begin{aligned}
& \text { Red IP65 } \\
& 14242111
\end{aligned}
\] & & \\
\hline
\end{tabular}
(1) With defectable door interlook.

SIRCO PV IEC 60947-3

\section*{1500 VDC - Back plate mounting}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Rating (A) & Frame size & Number of poles & Switch body & Direct handle & External handle & Shaft for external handle & Quantity to be ordered to connect 2 poles in series \\
\hline \multicolumn{8}{|c|}{1 PV circuit} \\
\hline 275 A & B5 & \(3 P\) & 27PV 3026 & \multirow{4}{*}{\[
\begin{gathered}
\text { J2 type } \\
\text { Black } \\
11221111 \\
\text { Red } \\
11231111
\end{gathered}
\]} & \multirow[t]{2}{*}{S2 type \({ }^{(1)}\) Black IP55 14212111} & \multirow[t]{2}{*}{\[
\begin{gathered}
200 \mathrm{~mm} \\
14001020
\end{gathered}
\]} & \[
\begin{gathered}
1 x \\
27090027
\end{gathered}
\] \\
\hline 400 A & B5 & \(3 P\) & 27PV 3032 & & & & \multirow[t]{2}{*}{\[
\begin{gathered}
1 x \\
27090045
\end{gathered}
\]} \\
\hline 500 A & B5 & \(3 P\) & 27PV 3039 & & \begin{tabular}{l}
Black IP65 \\
14232111
\end{tabular} & \[
\begin{gathered}
320 \mathrm{~mm} \\
14001032
\end{gathered}
\] & \\
\hline 630 A & B5ds & 8 P & 26PV 8063 & & \[
\begin{aligned}
& \text { Red IP65 } \\
& 14242111
\end{aligned}
\] & \[
\begin{gathered}
400 \mathrm{~mm} \\
14001040
\end{gathered}
\] & \[
\begin{gathered}
1 \mathrm{x} \\
26090080
\end{gathered}
\] \\
\hline 800 A & \(B 6{ }_{\text {DS }}\) & 8 P & 26PV 8080 & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { C2 type } \\
\text { Black } \\
27997012 \\
\text { Red } \\
27997013
\end{gathered}
\]} & \multirow{3}{*}{V1 type Black IP65 27997145} & \multirow{3}{*}{\[
\begin{gathered}
320 \mathrm{~mm} \\
41993018
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
1 x \\
26091100
\end{gathered}
\]} \\
\hline 1250 A & \(B 6{ }_{\text {ds }}\) & 8 P & 26PV 8120 & & & & \\
\hline 2000 A & \(B 7{ }_{\text {ds }}\) & 8 P & 26PV 8200 & & & & \[
\begin{gathered}
1 x \\
26091200
\end{gathered}
\] \\
\hline \multicolumn{8}{|c|}{2 PV circuits} \\
\hline 275 A & B5ds & 6 P & 27PV 6026 & \multirow{3}{*}{\[
\begin{gathered}
\text { J2 type } \\
\text { Black } \\
11221111 \\
\text { Red } \\
1123111
\end{gathered}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
S2 type \({ }^{(1)}\) Black IP55 14212111 \\
Black IP65 \\
14232111
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
200 \mathrm{~mm} \\
14001020 \\
320 \mathrm{~mm} \\
14001032
\end{gathered}
\]} & \[
\begin{gathered}
1 \times \\
27090027
\end{gathered}
\] \\
\hline 400 A & \(B 5_{\text {ds }}\) & 6 P & 27PV 6032 & & & & \multirow{2}{*}{\[
\begin{gathered}
1 x \\
27090045
\end{gathered}
\]} \\
\hline 500 A & \(B 5_{\text {DS }}\) & 6 P & 27PV 6039 & & \[
\begin{aligned}
& \text { Red IP65 } \\
& 14242111
\end{aligned}
\] & \[
\begin{gathered}
400 \mathrm{~mm} \\
14001040
\end{gathered}
\] & \\
\hline
\end{tabular}
(1) With defectable door interlock.

\section*{Accessories}

\section*{Direct operation handle}


\section*{Door interlocked external operation handle}

Use
Door interlocked external operation handles include an escutcheon, are padlockable and must be utilised with an extension shaft. In a combiner box, located close to the solar cell strings, or located close to the inverter, we recommend to use a door interlocked external handle for its safety features.

\section*{Example}

The locking function of the enclosure in the "ON" position will force the operator to safely disconnect and isolate the solar cell strings prior to any intervention.
Opening the door when the switch is on "ON" position is possible by defeating the locking function using a tool (authorised persons only). The interlocking function is restored when the door is closed back.

Front operation
\begin{tabular}{|c|c|c|c|c|}
\hline Frame size & Handle type & Handle colour & Degree of protection & Reference \\
\hline\(B 4 \ldots\) B5 - B4 \(4_{D S}\) & S2 & Black & IP55 & 14212111 \\
\hline\(B 4 \ldots B 5-B 4_{D S}\) & S2 & Black & IP65 & 14232111 \\
\hline\(B 4 \ldots B 5-B 4_{D S}\) & S2 & Red & IP65 & 14242111 \\
\hline\(B 5_{D S}-B 6 \ldots\) B7 & S4 & Black & IP65 & 14433111 \\
\hline\(B 5_{D S}-B 6 \ldots B 7\) & S4 & Red & IP65 & 14443111 \\
\hline\(B 8-B 6_{D S}-B 7_{D S}\) & \(V 1\) & Black & IP65 & 27997145 \\
\hline
\end{tabular}

SIRCO PV IEC 60947-3
Load break switches for photovoltaic applications
from 100 to 3200 A, up to 1500 VDC

\section*{Accessories (continued)}

\section*{Shaft for external handle}

Use
Standard lengths: Other lengths: please consult us.
- 200 mm,
- 320 mm,
- 400 mm.
\begin{tabular}{|c|c|c|c|c|}
\hline Frame size & Handle type & Dimension Y (mm) & Length (mm) & Reference \\
\hline B4 & S2 & 150... 295 & 200 & 14001020 \\
\hline B4 & S2 & \(150 . . .415\) & 320 & 14001032 \\
\hline B4 & S2 & 150 ... 495 & 400 & 14001040 \\
\hline B5 & S2 & 203 ... 328 & 200 & 14001020 \\
\hline B5 & S2 & 203... 448 & 320 & 14001032 \\
\hline B5 & S2 & 203 ... 525 & 400 & 14001040 \\
\hline B6 & S4 & 220 ... 343 & 200 & 14011520 \\
\hline B6 & S4 & 220 ... 463 & 320 & 14011532 \\
\hline B6 & S4 & \(220 . . .543\) & 400 & 14011540 \\
\hline B7 & S4 & 305 ... 366 & 200 & 14011520 \\
\hline B7 & S4 & \(305 . . .485\) & 320 & 14011532 \\
\hline B7 & S4 & \(305 \ldots 564\) & 400 & 14011540 \\
\hline \(B 4{ }_{\text {ds }}\) & S2 & \(305 . . .363\) & 200 & 14001020 \\
\hline \(B 4{ }_{\text {ds }}\) & S2 & \(305 . . .485\) & 320 & 14001032 \\
\hline B4 \({ }_{\text {ds }}\) & S2 & \(305 . . .561\) & 400 & 14001040 \\
\hline \(B 5_{\text {ds }}\) & S4 & 406 ... 467 & 200 & 14011520 \\
\hline \(B 5_{\text {ds }}\) & S4 & 406 ... 589 & 320 & 14011532 \\
\hline B5 \({ }_{\text {d }}\) & S4 & 406 ... 668 & 400 & 14011540 \\
\hline B6os & V1 & \(508 . . .714\) & 320 & 41993018 \\
\hline B6 \({ }_{\text {DS }}\) & V1 & \(508 . . .795\) & 400 & 41993019 \\
\hline B7 \({ }_{\text {ds }}\) & V1 & \(508 . . .714\) & 320 & 41993018 \\
\hline B7 \({ }_{\text {ds }}\) & V1 & \(508 . . .795\) & 400 & 41993019 \\
\hline B8 & V1 & 415...690 & 320 & 27993018 \\
\hline B8 & V1 & 415... 820 & 450 & 27993019 \\
\hline
\end{tabular}



\section*{Shaft guide for external operation}

Use
To guide the shaft extension into the Required for shaft lengths over 320 mm external handle.
This accessory enables the handle to engage the extension shaft with a misalignment of up to 15 mm .
\begin{tabular}{|l|c|}
\hline Description & Reference \\
\hline Shaft guide & 14290000 \\
\hline
\end{tabular}



\section*{Alternative S-type handle cover colours}

Use
For single lever handles type S1, S2, S3. Other colours: please consult us.
\begin{tabular}{|l|c|c|c|}
\hline Handle colour & Handle & To be ordered in multiples of & Reference \\
\hline Light grey & S1, S2, S3 type & 50 & 14010001 \\
\hline Dark grey & S1, S2, S3 type & 50 & 14010011 \\
\hline Light grey & S4 type & 50 & 14010031 \\
\hline Dark grey & S4 type & 50 & 14010041 \\
\hline
\end{tabular}

\section*{Auxiliary contact}

Use
Pre-break and signalling of positions 0 and l :
-1 to 2 NO/NC auxiliary contacts,
-1 to 4 NO + NC auxiliary contacts,
- 1 to 2 low level NO/NC auxiliary contacts.

\section*{Characteristics}

NO/NC AC: IP2 with front operation.
Connection to the control circuit
By 6.35 mm fast-on terminal.
Electrical characteristics
30000 operations.

NO/NC changeover auxiliary contacts
\begin{tabular}{|l|c|c|c|}
\hline Frame size & Position AC & Type & Reference \\
\hline\(B 4 \ldots\) B8 & 1 contact & NO/NC & 26990031 \\
\hline\(B 4 \ldots B 8\) & 2 contacts & NO/NC & 26000032 \\
\hline\(B 4_{D S} \ldots B 7_{D S}\) & 1 contact & NO/NC & 26990061 \\
\hline\(B 4_{D S} \ldots B 7_{D S}\) & 2 contacts & NO/NC & 26990062 \\
\hline
\end{tabular}


Low level NO/NC auxiliary contacts
\begin{tabular}{|l|c|c|c|}
\hline Frame size & Position AC & Type & Reference \\
\hline B4 \(\ldots\) B7 & 1 contact & NO/NC & 26990301 \\
\hline B4 \(\ldots\) B7 & 2 contacts & NO/NC & 26000302 \\
\hline
\end{tabular}

NO +NC contact
\begin{tabular}{|l|c|c|c|}
\hline Frame size & Position AC & Type & Reference \\
\hline B4 \(\ldots\) B7 & 1 contact & NO + NC & 26990061 \\
\hline B4 \(\ldots\) B7 & 2 contacts & NO + NC & 26990062 \\
\hline
\end{tabular}

\section*{Terminal screen}

Use
Top and bottom protection against direct contact with terminals or connection parts.
\begin{tabular}{|c|c|c|c|c|}
\hline Frame size & No. of poles & Position & Pack & Reference \\
\hline B4 & 2 P & top or bottom & 1 unit & 26983020 \\
\hline B4 & 4 P & top or bottom & 1 unit & 26984020 \\
\hline B5 & 3 P & top or bottom & 1 unit & 26983050 \\
\hline B5 & 4 P & top or bottom & 1 unit & 26984050 \\
\hline B6 & 4 P & top or bottom & 1 unit & 26984080 \\
\hline B7 & 4 P & top or bottom & 1 unit & 26984120 \\
\hline B8 & 4 P & top or bottom & 1 unit & 26984200 \\
\hline B4 \({ }_{\text {ds }}\) & 2 P & top or bottom & 1 unit & 15093025 \\
\hline B5 \({ }_{\text {s }}\) & 6 P & top and bottom & 2 units & 15093063 \\
\hline B5 \({ }_{\text {d }}\) & 8 P & top and bottom & 2 units & 15094063 \\
\hline B6 \({ }_{\text {ds }}\) & 8 P & top and bottom & 2 units & 15094080 \\
\hline B7 \({ }_{\text {ds }}\) & 8 P & top and bottom & 2 units & 15094199 \\
\hline
\end{tabular}


SIRCO PV IEC 60947-3
Load break switches for photovoltaic applications
from 100 to 3200 A , up to 1500 VDC

\section*{Accessories (continued)}

Bridging bars for connecting poles in series
Use
The bridging bars will make easy the connection of the poles in series, allowing the following configurations \({ }^{(1)}\). (1) Other connections: refer to mounting instructions.

1000 VDC
\begin{tabular}{|c|c|c|c|c|}
\hline Frame size & Rating (A) & Quantity to be ordered to connect 2 poles in series & Fig. & Reference \\
\hline \multicolumn{5}{|l|}{1 PV circuit} \\
\hline B4 & 100 & -(1) & - & -(1) \\
\hline B4 & 160 & -(1) & - & -(1) \\
\hline B4 & 250 & -(1) & - & -(1) \\
\hline B4 & 315 & -(1) & - & - \({ }^{(1)}\) \\
\hline B4 & 400 & 2 & 1 & 26090025 \\
\hline B4 & 500 & 2 & 1 & 26090025 \\
\hline B5 & 630 & 1 & 2 & 26090080 \\
\hline B5 & 800 & 1 & 2 & 26090080 \\
\hline B6 & 1250 & 1 & 3 & 26091100 \\
\hline B7 & 2000 & 1 & 3 & 26091200 \\
\hline B8 & 3200 & & & please consult us \\
\hline \multicolumn{5}{|l|}{2 PV circuits} \\
\hline B4 \({ }_{\text {ds }}\) & 100 & -(1) & - & -(1) \\
\hline \(B 4_{\text {ds }}\) & 160 & -(1) & - & -(1) \\
\hline B4 \({ }_{\text {ds }}\) & 250 & -(1) & - & -(1) \\
\hline B4 \({ }_{\text {ds }}\) & 315 & -(1) & - & -(1) \\
\hline B5 & 400 & 1 & 4 & 27090045 \\
\hline B5 & 500 & 1 & 4 & 27090045 \\
\hline B5 \({ }_{\text {ds }}\) & 630 & 1 & 2 & 26090080 \\
\hline B6 \({ }_{\text {ds }}\) & 800 & 1 & 3 & 26091100 \\
\hline B6os & 1250 & 1 & 3 & 26091100 \\
\hline B7 \({ }_{\text {DS }}\) & 2000 & 1 & 3 & 26091200 \\
\hline \multicolumn{5}{|l|}{4 PV circuits} \\
\hline B5 \({ }_{\text {ds }}\) & 500 & 1 & 4 & 27090045 \\
\hline
\end{tabular}

1500 VDC
\begin{tabular}{|c|c|c|c|c|}
\hline Frame size & Rating (A) & Quantity to be ordered to connect 2 poles in series & Fig. & Reference \\
\hline \multicolumn{5}{|l|}{1 PV circuit} \\
\hline B5 & 275 & 1 & 5 & 27090027 \\
\hline B5 & 315 & 1 & 5 & 27090027 \\
\hline B5 & 400 & 1 & 4 & 27090045 \\
\hline B5 & 500 & 1 & 4 & 27090045 \\
\hline B5 \({ }_{\text {ds }}\) & 630 & 1 & 2 & 26090080 \\
\hline B6 \({ }_{\text {ps }}\) & 800 & 1 & 3 & 26091100 \\
\hline B6 \({ }_{\text {ds }}\) & 1250 & 1 & 3 & 26091100 \\
\hline B7 \({ }_{\text {ds }}\) & 2000 & 1 & 3 & 26091200 \\
\hline \multicolumn{5}{|l|}{2 PV circuits} \\
\hline B5 \({ }_{\text {ds }}\) & 275 & 1 & 5 & 27090027 \\
\hline B5 \({ }_{\text {ds }}\) & 400 & 1 & 4 & 27090045 \\
\hline B5 \({ }_{\text {ds }}\) & 500 & 1 & 4 & 27090045 \\
\hline
\end{tabular}
(1) Bridging bars not needed.

Bridging bars for connecting poles in series (continued)


Fig. 1


Fig. 3

Fig. 4

SIRCO PV IEC 60947-3
Load break switches for photovoltaic applications
from 100 to 3200 A , up to 1500 VDC

Characteristics
Characteristics according to IEC 60947-3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Rated current In & & & \multicolumn{4}{|c|}{100 A} & \multicolumn{4}{|c|}{160 A} \\
\hline Thermal current at & & & \multicolumn{4}{|c|}{100} & \multicolumn{4}{|c|}{160} \\
\hline Thermal current at & & & \multicolumn{4}{|c|}{100} & \multicolumn{4}{|c|}{160} \\
\hline Thermal current at & & & \multicolumn{4}{|c|}{100} & \multicolumn{4}{|c|}{160} \\
\hline Rated insulation volta & & & \multicolumn{4}{|c|}{1500} & \multicolumn{4}{|c|}{1500} \\
\hline \multicolumn{3}{|l|}{Rated impulse withstand voltage \(\mathrm{U}_{\text {imp }}\) (kV)} & \multicolumn{4}{|c|}{12} & \multicolumn{4}{|c|}{12} \\
\hline Number of circuits & Rated voltage & Utilisation category & \(\mathrm{I}_{\mathrm{e}}(\mathrm{A})\) & Number of pole(s) in series per circuit & Number of pole(s) of the device & Frame size & \(\mathrm{I}_{\mathrm{e}}(\mathrm{A})\) & Number of pole(s) in series per circuit & Number of pole(s) of the device & Frame size \\
\hline 1 circuit & 1000 VDC & DC-21 B & 100 & \(1 \mathrm{P}+; 1 \mathrm{P}\) & 2 P & B4 & 160 & \(1 \mathrm{P}+; 1 \mathrm{P}\) & 2 P & B4 \\
\hline 1 circuit & 1500 VDC & DC-21 B & 100 & \(3 P+; 1 P-\) & 4 P & \(B 4{ }_{\text {ds }}\) & 160 & \(3 P+; 1 P\) & 4 P & \(B 4{ }_{\text {ds }}\) \\
\hline 2 circuits & 1000 VDC & DC-21 B & 100 & \(1 \mathrm{P}+; 1 \mathrm{P}\) & 4 P & \(B 4\) ds & 160 & \(1 P+; 1 P\) & 4 P & \(B 4{ }_{\text {DS }}\) \\
\hline
\end{tabular}

Short-circuit capacity (without protection)
\begin{tabular}{l|c|c|}
\hline Rated short-time withstand current 0.3 s . (kA eff) & 10 & 10 \\
\hline Rated short-time withstand current 1 s . (kA eff) & 5 & 5 \\
\hline Rated short-circuit making capacity \(\mathrm{I}_{\mathrm{cm}}(\mathrm{kA}\) peak) \(-50 \mathrm{~ms}\) & 10 & 10 \\
\hline
\end{tabular}

\section*{Connection}
\begin{tabular}{|l|l|l|}
\hline Maximum Cu rigid cable cross-section \(\left(\mathrm{mm}^{2}\right)\) & 35 & 70 \\
\hline Maximum Cu busbar width \((\mathrm{mm})\) & 32 & 32 \\
\hline Tightening torque \(\min (\mathrm{Nm})\) & 20 & 20 \\
\hline Tightening torque \(\max (\mathrm{Nm})\) & 26 & 26 \\
\hline
\end{tabular}

Mechanical characteristics
\begin{tabular}{|l|c|c|}
\hline Durability (number of operating cycles) & 10000 & 10000 \\
\hline Tightening torque \((\mathrm{Nm})\) & 10 & 10 \\
\hline Weight of a 2 pole device \((\mathrm{kg})\) & 1.8 & 1.8 \\
\hline Weight of a 4 pole device \((\mathrm{kg})\) & 4.3 & 4.3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Rated current In} & \multicolumn{4}{|c|}{250 A} & \multicolumn{4}{|c|}{275 A} \\
\hline Thermal current at & & & \multicolumn{4}{|c|}{250} & \multicolumn{4}{|c|}{275} \\
\hline Thermal current at & & & \multicolumn{4}{|c|}{250} & \multicolumn{4}{|c|}{275} \\
\hline \multicolumn{3}{|l|}{Thermal current at \(60^{\circ} \mathrm{C}(\mathrm{A})\)} & \multicolumn{4}{|c|}{250} & \multicolumn{4}{|c|}{275} \\
\hline \multicolumn{3}{|l|}{Rated insulation voltage \(U_{i}(M)\)} & \multicolumn{4}{|c|}{1500} & \multicolumn{4}{|c|}{1500} \\
\hline \multicolumn{3}{|l|}{Rated impulse withstand voltage \(\mathrm{U}_{\text {imp }}(\mathrm{kV})\)} & \multicolumn{4}{|c|}{12} & \multicolumn{4}{|c|}{12} \\
\hline Number of circuits & Rated voltage & Utilisation category & \(\mathrm{I}_{\mathrm{e}}(\mathrm{A})\) & Number of pole(s) in series per circuit & Number of pole(s) of the device & Frame size & \(\mathrm{I}_{\mathrm{e}}(\mathrm{A})\) & Number of pole(s) in series per circuit & Number of pole(s) of the device & Frame size \\
\hline 1 circuit & 1000 VDC & DC-21 B & 250 & \(1 \mathrm{P}+; 1 \mathrm{P}\) & 2 P & B4 & 275 & \(1 \mathrm{P}+\); 1 P - & 3 P & B5 \\
\hline 1 circuit & 1500 VDC & DC-21B & 250 & \(3 \mathrm{P}+; 1 \mathrm{P}\) & 4 P & B4 \({ }_{\text {d }}\) & 275 & \(2 \mathrm{P}+\); 1 P - & \(3 P\) & B5 \\
\hline 2 circuits & 1000 VDC & DC-21B & 250 & \(1 \mathrm{P}+\); 1 P - & 4 P & \(B 4{ }_{\text {d }}\) & 275 & \(1 \mathrm{P}+\); 1 P - & 6 P & B5 \({ }_{\text {d }}\) \\
\hline 2 circuits & 1500 VDC & DC-21 B & - & - & - & - & 275 & \(2 \mathrm{P}+\); 1 P - & 6 P & B5 \({ }_{\text {ds }}\) \\
\hline 4 circuits & 1000 VDC & DC-21 B & - & - & - & - & 275 & \(1 \mathrm{P}+; 1 \mathrm{P}\) - & 8 P & B5 \({ }_{\text {d }}\) \\
\hline
\end{tabular}

Short-circuit capacity (without protection)
\begin{tabular}{l|c|c|c|}
\hline Rated short-time withstand current 0.3 s . (kA eff) & 10 & 10 \\
\hline Rated short-time withstand current 1 s . (kA eff) & 5 & 5 \\
\hline Rated short-circuit making capacity \(\operatorname{lom}(\mathrm{kA}\) peak) \(-50 \mathrm{~ms}\) & 10 & 10 \\
\hline Connection & & \\
\hline Maximum Cu rigid cable cross-section (mm²) & 120 & 185 \\
\hline Maximum Cu busbar width (mm) & 32 & 32 \\
\hline Tightening torque min (Nm) & 20 & 20 \\
\hline Tightening torque max (Nm) & 26 & 26 \\
\hline Mechanical characteristics & 10000 & 10000 \\
\hline Durability (number of operating cycles) & 10 & 10 \\
\hline Tightening torque (Nm) & 1.8 & - \\
\hline Weight of a 2 pole device \((\mathrm{kg})\) & - & 6 \\
\hline Weight of a 3 pole device \((\mathrm{kg})\) & 4.3 & - \\
\hline Weight of a 4 pole device \((\mathrm{kg})\) & - & 12.3 \\
\hline Weight of a 6 pole device \((\mathrm{kg})\) & - & 15 \\
\hline Weight of an 8 pole device \((\mathrm{kg})\) & & & \\
\hline
\end{tabular}

Characteristics according to IEC 60947-3 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Rated current In} & \multicolumn{4}{|c|}{315 A} & \multicolumn{4}{|c|}{400 A} \\
\hline \multicolumn{3}{|l|}{Thermal current at \(40^{\circ} \mathrm{C}\) (A)} & \multicolumn{4}{|c|}{315} & \multicolumn{4}{|c|}{400} \\
\hline \multicolumn{3}{|l|}{Thermal current at \(50^{\circ} \mathrm{C}\) (A)} & \multicolumn{4}{|c|}{315} & \multicolumn{4}{|c|}{400} \\
\hline \multicolumn{3}{|l|}{Thermal current at \(60^{\circ} \mathrm{C}(\mathrm{A})\)} & \multicolumn{4}{|c|}{315} & \multicolumn{4}{|c|}{400} \\
\hline \multicolumn{3}{|l|}{Rated insulation voltage \(\mathrm{U}_{\mathrm{i}}(\mathrm{M})\)} & \multicolumn{4}{|c|}{1500} & \multicolumn{4}{|c|}{\(1500{ }^{(1)}\)} \\
\hline \multicolumn{3}{|l|}{Rated impulse withstand voltage \(\mathrm{U}_{\mathrm{imp}}\) (kV)} & \multicolumn{4}{|c|}{12} & \multicolumn{4}{|c|}{12} \\
\hline Number of circuits & Rated voltage & Utilisation category & \(\mathrm{I}_{\mathrm{e}}(\mathrm{A})\) & Number of pole(s) in series per circuit & Number of pole(s) of the device & Frame size & \(\mathrm{I}_{\mathrm{e}}(\mathrm{A})\) & Number of pole(s) in series per circuit & Number of pole(s) of the device & Frame size \\
\hline 1 circuit & 1000 VDC & DC-21 B & 315 & \(1 \mathrm{P}+; 1 \mathrm{P}\) - & 2 P & B4 & 400 & \(2 \mathrm{P}+; 2 \mathrm{P}\) - & 4 P & B4 \\
\hline 1 circuit & 1500 VDC & DC-21B & 315 & \(2 \mathrm{P}+; 1 \mathrm{P}\) - & 3 P & B5 & 400 & \(2 P+; 1 P\) - & 3 P & B5 \\
\hline 2 circuits & 1000 VDC & DC-21B & 315 & \(1 \mathrm{P}+; 1 \mathrm{P}\) - & 4 P & B4 \({ }_{\text {d }}\) & 400 & \(1 P+; 1 P\) - & 4 P & B5 \\
\hline 2 circuits & 1500 VDC & DC-21B & - & - & - & - & 400 & \(2 \mathrm{P}+; 1 \mathrm{P}\) - & 6 P & B5 ds \\
\hline 4 circuits & 1000 VDC & DC-21 B & - & - & - & - & 400 & \(1 \mathrm{P}+; 1 \mathrm{P}\) - & 8 P & B5 \({ }_{\text {d }}\) \\
\hline
\end{tabular}

\section*{Short-circuit capacity (without protection)}
\begin{tabular}{|l|c|c|}
\hline Rated short-time withstand current 0.3 s . (kA eff) & 10 & - \\
\hline Rated short-time withstand current 1 s . (kA eff) & 5 & 10 \\
\hline Rated short-circuit making capacity \(\mathrm{I}_{\mathrm{cm}}(\mathrm{kA}\) peak) \(-50 \mathrm{~ms}\) & 10 & 10 \\
\hline
\end{tabular}

\section*{Connection}
\begin{tabular}{|c|c|c|}
\hline Maximum Cu rigid cable cross-section ( \(\mathrm{mm}^{2}\) ) & 185 & 240 \\
\hline Maximum Cu busbar width (mm) & 32 & 32 \\
\hline Tightening torque min (Nm) & 20 & 20 \\
\hline Tightening torque max (Nm) & 26 & 26 \\
\hline \multicolumn{3}{|l|}{Mechanical characteristics} \\
\hline Durability (number of operating cycles) & 10000 & 5000 \\
\hline Tightening torque ( Nm ) & 10 & 10 \\
\hline Weight of a 2 pole device (kg) & 1.8 & - \\
\hline Weight of a 3 pole device (kg) & 6 & 6 (B4) / 3.8 (B5) \\
\hline Weight of a 4 pole device (kg) & 4.3 & 2.3 \\
\hline Weight of a 6 pole device (kg) & - & 12.3 \\
\hline Weight of an 8 pole device (kg) & - & 15 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Rated current In} & \multicolumn{4}{|c|}{500 A} & \multicolumn{4}{|c|}{630 A} \\
\hline \multicolumn{3}{|l|}{Thermal current at \(40^{\circ} \mathrm{C}(\mathrm{A})\)} & \multicolumn{4}{|c|}{500} & \multicolumn{4}{|c|}{630} \\
\hline \multicolumn{3}{|l|}{Thermal current at \(40^{\circ} \mathrm{C}(\mathrm{A})\)} & \multicolumn{4}{|c|}{500} & \multicolumn{4}{|c|}{630} \\
\hline \multicolumn{3}{|l|}{Thermal current at \(60^{\circ} \mathrm{C}(\mathrm{A})\)} & \multicolumn{4}{|c|}{B4: 475 / B5: 500} & \multicolumn{4}{|c|}{560} \\
\hline \multicolumn{3}{|l|}{Rated insulation voltage \(U_{i}(\mathrm{M})\)} & \multicolumn{4}{|c|}{\(1500^{(1)}\)} & \multicolumn{4}{|c|}{1500} \\
\hline \multicolumn{3}{|l|}{Rated impulse withstand voltage \(\mathrm{U}_{\text {imp }}\) (kV)} & \multicolumn{4}{|c|}{12} & \multicolumn{4}{|c|}{12} \\
\hline Number of circuits & Rated voltage & Utilisation category & \(\mathrm{I}_{\mathrm{e}}(\mathrm{A})\) & Number of pole(s) in series per circuit & Number of pole(s) of the device & Frame size & \(\mathrm{I}_{\mathrm{e}}(\mathrm{A})\) & Number of pole(s) in series per circuit & Number of pole(s) of the device & Frame size \\
\hline 1 circuit & 1000 VDC & DC-21 B & 500 & \(2 \mathrm{P}+; 2 \mathrm{P}\) - & 4 P & B4 & 630 & \(2 \mathrm{P}+; 2 \mathrm{P}\) - & 4 P & B5 \\
\hline 1 circuit & 1500 VDC & DC-21B & 500 & \(2 \mathrm{P}+\); 1 P - & 3 P & B5 & 630 & \(4 \mathrm{P}+; 4 \mathrm{P}\) - & 8 P & B5 \(\mathrm{Ds}^{\text {s }}\) \\
\hline 2 circuits & 1000 VDC & DC-21B & 500 & \(1 \mathrm{P}+; 1 \mathrm{P}\) - & 4 P & B5 & 630 & \(2 \mathrm{P}+; 2 \mathrm{P}\) - & 8 P & B5 ds \\
\hline 2 circuits & 1500 VDC & DC-21 B & 500 & \(2 P+; 1 P-\) & 6 P & B5 \({ }_{\text {Ds }}\) & - & - & - & - \\
\hline 4 circuits & 1000 VDC & DC-21 B & 500 & \(1 \mathrm{P}+; 1 \mathrm{P}\) - & 8 P & B5 Ds & - & - & - & - \\
\hline
\end{tabular}

Short-circuit capacity (without protection)
\begin{tabular}{|c|c|c|}
\hline Rated short-time withstand current 1 s . (kA eff) & 10 & 10 \\
\hline Rated short-circuit making capacity lam (kA peak) - 50ms & 10 & 10 \\
\hline \multicolumn{3}{|l|}{Connection} \\
\hline Maximum Cu rigid cable cross-section ( \(\mathrm{mm}^{2}\) ) & 2×150 & 2x185 \\
\hline Maximum Cu busbar width (mm) & 32 & 40 \\
\hline Tightening torque min (Nm) & 20 & 40 \\
\hline Tightening torque max (Nm) & 26 & 40 \\
\hline \multicolumn{3}{|l|}{Mechanical characteristics} \\
\hline Durability (number of operating cycles) & 5000 & 5000 \\
\hline Tightening torque ( Nm ) & 10 & 14.5 \\
\hline Weight of a 3 pole device (kg) & 6 (B4) / 3.8 (B5) & - \\
\hline Weight of a 4 pole device (kg) & 2.3 & 3.8 \\
\hline Weight of a 6 pole device (kg) & 12.3 & - \\
\hline Mass of a 8 pole device (kg) & 15 & 15 \\
\hline
\end{tabular}
(1) For B4 frame, the delivered spacers have to be installed.

SIRCO PV IEC 60947-3
Load break switches for photovoltaic applications
from 100 to 3200 A, up to 1500 VDC

Characteristics (continued)
Characteristics according to IEC 60947-3 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Rated current In & & & \multicolumn{4}{|c|}{800 A} & \multicolumn{4}{|c|}{1250 A} \\
\hline Thermal current at & & & \multicolumn{4}{|c|}{800} & \multicolumn{4}{|c|}{1250} \\
\hline Thermal current at 5 & & & \multicolumn{4}{|c|}{800} & \multicolumn{4}{|c|}{1250} \\
\hline Thermal current at & & & \multicolumn{4}{|c|}{B5: 650 / B6: 800} & \multicolumn{4}{|c|}{1125} \\
\hline Rated insulation voltag & & & \multicolumn{4}{|c|}{1500} & \multicolumn{4}{|c|}{1500} \\
\hline \multicolumn{3}{|l|}{Rated impulse withstand voltage \(\mathrm{U}_{\text {imp }}\) (kV)} & \multicolumn{4}{|c|}{12} & \multicolumn{4}{|c|}{12} \\
\hline Number of circuits & Rated voltage & Utilisation category & \(\mathrm{I}_{\mathrm{e}}(\mathrm{A})\) & Number of pole(s) in series per circuit & Number of pole(s) of the device & Frame size & \(\mathrm{I}_{\mathrm{e}}(\mathrm{A})\) & Number of pole(s) in series per circuit & Number of pole(s) of the device & Frame size \\
\hline 1 circuit & 1000 VDC & DC-21 B & 800 & \(2 \mathrm{P}+; 2 \mathrm{P}\) - & 4 P & B5 & 1250 A & \(2 \mathrm{P}+; 2 \mathrm{P}\) - & 4 P & B6 \\
\hline 1 circuit & 1500 VDC & DC-21B & 800 & \(4 \mathrm{P}+; 4 \mathrm{P}\) - & 8 P & B6 \({ }_{\text {ds }}\) & 1250 A & \(4 \mathrm{P}+; 4 \mathrm{P}\) - & 8 P & \(B 6{ }_{\text {DS }}\) \\
\hline 2 circuits & 1000 VDC & DC-21 B & 800 & \(2 \mathrm{P}+; 2 \mathrm{P}\) - & 8 P & \(B 6{ }_{\text {DS }}\) & 1250 A & \(2 \mathrm{P}+; 2 \mathrm{P}-\) & 8 P & \(B 6{ }_{\text {ds }}\) \\
\hline \multicolumn{11}{|l|}{Short-circuit capacity (without protection)} \\
\hline \multicolumn{3}{|l|}{Rated short-time withstand current 1 s . (kA eff)} & \multicolumn{4}{|c|}{10} & \multicolumn{4}{|c|}{10} \\
\hline \multicolumn{3}{|l|}{Rated short-circuit making capacity \(\mathrm{I}_{\text {cm }}\) (kA peak) - 50 ms} & \multicolumn{4}{|c|}{10} & \multicolumn{4}{|c|}{10} \\
\hline \multicolumn{11}{|l|}{Connection} \\
\hline \multicolumn{3}{|l|}{Maximum Cu rigid cable cross-section (mm²)} & \multicolumn{4}{|c|}{\(2 \times 240\)} & \multicolumn{4}{|c|}{\(2 \times 240\)} \\
\hline \multicolumn{3}{|l|}{Maximum Cu busbar width (mm)} & \multicolumn{4}{|c|}{50} & \multicolumn{4}{|c|}{63} \\
\hline \multicolumn{3}{|l|}{Tightening torque min (Nm)} & \multicolumn{4}{|c|}{40} & \multicolumn{4}{|c|}{40} \\
\hline \multicolumn{3}{|l|}{Tightening torque max (Nm)} & \multicolumn{4}{|c|}{45} & \multicolumn{4}{|c|}{45} \\
\hline \multicolumn{11}{|l|}{Mechanical characteristics} \\
\hline \multicolumn{3}{|l|}{Durability (number of operating cycles)} & \multicolumn{4}{|c|}{5000} & \multicolumn{4}{|c|}{4000} \\
\hline \multicolumn{3}{|l|}{Tightening torque (Nm)} & \multicolumn{4}{|c|}{14.5} & \multicolumn{4}{|c|}{37} \\
\hline \multicolumn{3}{|l|}{Weight of a 4 pole device (kg)} & \multicolumn{4}{|c|}{3.8} & \multicolumn{4}{|c|}{3.8} \\
\hline \multicolumn{3}{|l|}{Weight of an 8 pole device (kg)} & \multicolumn{4}{|c|}{15} & \multicolumn{4}{|c|}{15} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Rated current In} & \multicolumn{4}{|c|}{2000 A} & \multicolumn{4}{|c|}{3200 A} \\
\hline \multicolumn{3}{|l|}{Thermal current at \(40^{\circ} \mathrm{C}\) (A)} & \multicolumn{4}{|c|}{2000} & \multicolumn{4}{|c|}{3200} \\
\hline \multicolumn{3}{|l|}{Thermal current at \(50^{\circ} \mathrm{C}\) (A)} & \multicolumn{4}{|c|}{1850} & \multicolumn{4}{|c|}{3200} \\
\hline \multicolumn{3}{|l|}{Thermal current at \(60^{\circ} \mathrm{C}(\mathrm{A})\)} & \multicolumn{4}{|c|}{1600} & \multicolumn{4}{|c|}{2700} \\
\hline \multicolumn{3}{|l|}{Rated insulation voltage \(\mathrm{U}_{\mathrm{i}}(\mathrm{M})\)} & \multicolumn{4}{|c|}{1500} & & & & \\
\hline \multicolumn{3}{|l|}{Rated impulse withstand voltage \(\mathrm{U}_{\text {imp }}\) (kV)} & \multicolumn{4}{|c|}{12} & \multicolumn{4}{|l|}{} \\
\hline Number of circuits & Rated voltage & Utilisation category & \(\mathrm{I}_{\mathrm{e}}(\mathrm{A})\) & Number of pole(s) in series per circuit & Number of pole(s) of the device & Frame size & \(\mathrm{I}_{\mathrm{e}}(\mathrm{A})\) & Number of pole(s) in series per circuit & Number of pole(s) of the device & Frame size \\
\hline 1 circuit & 1000 VDC & DC-21 B & 2000 A & \(2 \mathrm{P}+; 2 \mathrm{P}\) - & 4 P & B7 & 3200 A & \(2 \mathrm{P}+; 2 \mathrm{P}\) - & 4 P & B8 \\
\hline 1 circuit & 1500 VDC & DC-21B & 2000 A & 4P + ; 4P- & 8 P & \(B 7_{\text {DS }}\) & - & & . & - \\
\hline 2 circuits & 1000 VDC & DC-21 B & 2000 A & \(2 \mathrm{P}+; 2 \mathrm{P}\) - & 8 P & B7 \({ }_{\text {ds }}\) & & & & \\
\hline \multicolumn{7}{|l|}{Short-circuit capacity (without protection)} & & & & \\
\hline \multicolumn{3}{|l|}{Rated short-time withstand current 1 s . (kA eff)} & \multicolumn{4}{|c|}{10} & \multicolumn{4}{|c|}{10} \\
\hline \multicolumn{3}{|l|}{Rated short-circuit making capacity \(\mathrm{I}_{\text {cm }}\) (kA peak) - 50 ms} & \multicolumn{4}{|c|}{10} & \multicolumn{4}{|c|}{10} \\
\hline \multicolumn{11}{|l|}{Connection} \\
\hline \multicolumn{3}{|l|}{Maximum Cu busbar width (mm)} & \multicolumn{4}{|c|}{100} & \multicolumn{4}{|c|}{\(4 \times 100 \times 5\)} \\
\hline \multicolumn{3}{|l|}{Tightening torque min (Nm)} & \multicolumn{4}{|c|}{40} & \multicolumn{4}{|c|}{40} \\
\hline \multicolumn{3}{|l|}{Tightening torque max (Nm)} & \multicolumn{4}{|c|}{45} & \multicolumn{4}{|c|}{45} \\
\hline \multicolumn{11}{|l|}{Mechanical characteristics} \\
\hline \multicolumn{3}{|l|}{Durability (number of operating cycles)} & \multicolumn{4}{|c|}{4000} & \multicolumn{4}{|c|}{2000} \\
\hline \multicolumn{3}{|l|}{Tightening torque ( Nm )} & \multicolumn{4}{|c|}{56} & \multicolumn{4}{|c|}{75} \\
\hline \multicolumn{3}{|l|}{Weight of a 4 pole device (kg)} & \multicolumn{4}{|c|}{22} & \multicolumn{4}{|c|}{25} \\
\hline \multicolumn{3}{|l|}{Mass of a 8 pole device (kg)} & \multicolumn{4}{|c|}{50} & \multicolumn{4}{|c|}{-} \\
\hline
\end{tabular}

Pole connection in series


2 PV circuits - 1000 VDC
\(B 4 D S\)


B5-4P

\(B 5_{D S}-B 7_{D S}-8 P\)


2 PV circuits - 1500 VDC
\(B 5_{D s}-6 P\)


4 PV circuits- 1000 VDC
\(B 5_{\text {DS }}-8 \mathrm{P}\)

4. Circuit 4
from 100 to 3200 A, up to 1500 VDC

Dimensions (mm)
Frame size B4-B5

\(B 4_{\text {ds }}-B 5_{\text {ps }}\)

\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Frame size & No. of poles & A & B & C & H & H1 & J & J1 & J 2 & J3 & K & K1 & Y & Y1 \\
\hline\(B 4_{D S}\) & 4 P & 244 & 160 & 162 & 129 & 176 & 160 & 35 & - & 100 & 135 & 67.5 & 38.5 & 132.5 \\
\hline\(B 5_{D S}\) & \(6 P\) & 301 & 260 & 238.5 & 203 & 165.5 & 210 & 35 & 65 & - & 195 & 68.5 & 51.5 & 189 \\
\hline\(B 5_{D S}\) & \(8 P\) & 361 & 260 & 238.5 & 203 & 165.5 & 270 & 35 & 65 & - & 195 & 68.5 & 51.5 & 189 \\
\hline
\end{tabular}

Frame size B6


Frame size B6bs
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Frame size & No. of poles & A & B & C & H & H1 & J & J1 & K & K1 & Y & Y1 \\
\hline \(B 6{ }_{\text {ds }}\) & 8 P & 466 & 340 & 370 & 270 & 347 & 335 & 51.5 & 250 & 125 & 66.5 & 253.5 \\
\hline
\end{tabular}

Dimensions (mm) (continued)
Frame size B7


Frame size B7 \({ }_{\text {Ds }}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Frame size & No. of poles & A & B & C & H & H1 & J & J 1 & K & K1 & Y & Y1 \\
\hline B7 \({ }_{\text {ds }}\) & 8 P & 608.5 & 288 & 333 & 301 & 389 & 467 & 51.5 & 250 & 125 & 107.5 & 293.5 \\
\hline
\end{tabular}

Pour les dimensions du SIRCO PV 3200A - 1000 VDC - B8, veuillez nous consulter.

Dimensions for external handles (mm)
B4 - B4 ds \(^{-B 5}\)
Handle type
S2 type
Firection of operation
Diser
\(B 5\) bs - B6-B7
Handle type
\(B 8-B 6 d s-B 7 d s\)
Handle type

Load break switches for photovoltaic applications
from 100 to 3200 A, up to 1500 VDC

Bridging bars (mm)

\(B 4-B 4_{D S}\)
27090045


\section*{B5}

\section*{26090080}


\section*{B6}

26091100


27090027


26091200


Mounting orientation
All frames
O

\(B 6_{D S}-B 7_{D S}\)



\section*{Function}

SIRCO PV UL98B non fusible disconnect switches are heavy duty switches that break and make DC photovoltaic circuits on and off load. They are suitable for use in accordance with NEC Art. 690 Photovoltaic Installations. These switches are extremely durable and are tested and approved for use in the most demanding applications.


They are available in 2, 3, 4, 6 and 8 poles for all configurations from one to 4 circuits and can be used in all types of earthing systems (floating or grounded systems, single or double polarity switching), in order to suit all your requirements.

\section*{Advantages}

Optimise your investment
High switching performances means less poles in series to reach the operating voltage, consequently:
- Less bridging bars required, limiting installation costs and time.
- Less heat dissipation, making it possible to be installed in a smaller enclosure.

Guarantee safety over time
SIRCO PV are extremely robust products, with all casings made from fiber glass reinforced polyester materials that allows:
- High mechanical withstand.
- High stability to temperatures (RTI of \(130^{\circ} \mathrm{C}\) ).
- High dielectric performance (high CTI / tested according to ASTM D 2303).

Take advantage of an innovative design The SIRCO PV are able to operate on and off load up to 500 VDC per poles, providing extremely compact solution:
- 1000 VDC (UL 98B) on a 2 poles switch.
- 1500 VDC (IEC 60947-3) on a 3 poles switch.
- Up to 4 circuits each at 1000 VDC on an 8 poles switch.

Reliability and performance
Our range of SIRCO PV load break switches is compliant with UL98B and IEC 60947-3 standards and have been tested above standards expectation, ensuring no critical current.
They are as well able to withstand 10 kA , 50 ms , allowing the use of any overcurrent protection device for line protection.


\section*{Strong points}

\section*{\(>\) Patented switching technology}
> Positive break indication
\(>\) Up to 1000 VDC as per UL98B
\(>\) Up to 1500 VDC as per IEC 60947-3
> Suitable for use in accordance with NEC Art. 690


Approvals and certifications \({ }^{(1)}\)

(1) Product reference on request.

Typical PV architecture
The SIRCO PV range provides safe disconnection and isolation at all levels of your PV installation.


The SOCOMEC solutions
LEVELOF INSTALATION

\section*{SIRCO PV UL98B}

Load break switches for photovoltaic applications
from 100 to 2000 A , up to 1500 VDC

References
1000 VDC - Back plate mounting
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Rating (A) & Frame size & No. of poles & Switch body & External handle & Shaft for external handle & Bridging bar \\
\hline \multicolumn{7}{|c|}{1 PV circuit} \\
\hline 100 A & B4 & \multirow{5}{*}{2 P} & 27PV 2009 & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { S2 type } \\
\text { Black } \\
1,3 R, 12 \\
142 \mathrm{~F} 2111^{(1)}
\end{gathered}
\]} & \multirow[b]{2}{*}{\begin{tabular}{l}
200 mm \\
7.9 inches \\
14001020
\end{tabular}} & \multirow{3}{*}{\[
\begin{gathered}
1 x \\
27091020
\end{gathered}
\]} \\
\hline 200 A & B4 & & 27PV 2019 & & & \\
\hline 250 A & B4 & & 27PV 2024 & \[
\begin{gathered}
\text { Red/Yellow } \\
1,3 R, 12 \\
142 \mathrm{G} 2111^{(1)}
\end{gathered}
\] & \[
\begin{gathered}
320 \mathrm{~mm} \\
12.6 \text { inches } \\
14001032
\end{gathered}
\] & \\
\hline 325 A & B5 & & 27PV 2032 & \[
\begin{gathered}
\text { Black } \\
4,4 \mathrm{X} \\
\text { 142D } 2111^{(1)}
\end{gathered}
\] & \[
\begin{gathered}
400 \mathrm{~mm} \\
15.7 \text { inches }
\end{gathered}
\] & \[
\begin{gathered}
1 x \\
27091041
\end{gathered}
\] \\
\hline 400 A & B5 & & 27PV 2039 & \begin{tabular}{l}
Red/Yellow \\
4, 4X \\
142E \(2111^{(1)}\)
\end{tabular} & & \[
\begin{gathered}
2 x \\
27091041
\end{gathered}
\] \\
\hline 600 A & B6 & \multirow{3}{*}{4 P} & 27PV 4060 & \begin{tabular}{l}
S3 type Black 4, 4X 143D \(3111^{(1)}\) \\
Red/Yellow 4, 4X 143E \(3111^{(1)}\)
\end{tabular} & \[
\begin{gathered}
200 \mathrm{~mm} \\
7.9 \text { inches } \\
14011520
\end{gathered}
\] & \[
\begin{gathered}
2 x \\
27090062
\end{gathered}
\] \\
\hline 800 A & B7 & & 27DC 4081 & S4 type Black 4, 4X & 320 mm 12.6 inches 14011532 & \[
\begin{gathered}
2 x \\
27090081
\end{gathered}
\] \\
\hline 1200 A & B7 & & 27DC 4121 & \begin{tabular}{l}
\[
144 \mathrm{D} 3111^{(1)}
\] \\
Red/Yellow 4, 4X 144E \(3111^{(1)}\)
\end{tabular} & \[
\begin{gathered}
400 \mathrm{~mm} \\
15.7 \mathrm{inches} \\
14011540^{22}
\end{gathered}
\] & \multirow[t]{2}{*}{\[
\begin{gathered}
2 x \\
27090121
\end{gathered}
\]} \\
\hline 2000 A & \(B 7{ }_{\text {DS }}\) & 8 P & 27DC 4201 & V1 type Black 3R, 12 27997145 & 320 mm 12.6 inches 41993018 & \\
\hline \multicolumn{7}{|c|}{2 PV circuits} \\
\hline 100 A & \(B 4{ }_{\text {ds }}\) & \multirow{4}{*}{4 P} & 27PV 5009 & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { S2 type } \\
\text { Black } \\
1,3 R, 12 \\
142 \mathrm{~F} 2111^{(1)}
\end{gathered}
\]} & \multirow[b]{2}{*}{200 mm 7.9 inches 14001020} & \[
\begin{gathered}
2 x \\
27091020
\end{gathered}
\] \\
\hline 200 A & \(B 4_{\text {ds }}\) & & 27PV 5024 & & & \[
\begin{gathered}
4 \mathrm{x} \\
27091020
\end{gathered}
\] \\
\hline 325 A & B5 & & 27PV 4032 & Red/Yellow 1, 3R, 12 \(142 \mathrm{G} 2111^{(1)}\) & \[
\begin{gathered}
320 \mathrm{~mm} \\
12.6 \text { inches } \\
14001032
\end{gathered}
\] & \[
\begin{gathered}
2 x \\
27090027
\end{gathered}
\] \\
\hline 400 A & B5 & & 27PV 4039 & \begin{tabular}{l}
\[
\begin{gathered}
\text { Black } \\
4,4 \mathrm{XX} \\
\text { 142D } 2111^{(1)}
\end{gathered}
\] \\
Red/Yellow \\
4, 4X \\
142E \(2111^{(1)}\)
\end{tabular} & \[
\begin{gathered}
14001032 \\
400 \mathrm{~mm} \\
15.7 \mathrm{inches} \\
14001040^{2(2)}
\end{gathered}
\] & \[
\begin{gathered}
2 x \\
27090045 \\
(2 \text { units })
\end{gathered}
\] \\
\hline 600 A & \(B 6_{\text {DS }}\) & \multirow{3}{*}{8 P} & 27PV 8060 & \multirow{3}{*}{V1 type Black 3R, 12 27997145} & \multirow{3}{*}{320 mm 12.6 inches 41993018} & \[
\begin{gathered}
4 x \\
27090062
\end{gathered}
\] \\
\hline 800 A & \(B 7\) ds & & 27DC 8081 & & & \multirow[t]{2}{*}{\[
\begin{gathered}
4 \mathrm{x} \\
27090121
\end{gathered}
\]} \\
\hline 1000 A & \(B 7{ }_{\text {DS }}\) & & 27DC 8101 & & & \\
\hline \multicolumn{7}{|c|}{4 PV circuits} \\
\hline 350 A & \(B 5_{\text {DS }}\) & 8 P & 27PV 8039 & S3 type Black 4, 4X 143D \(3111^{(1)}\) Red/Yellow 4, 4X 143E \(3111^{(1)}\) & 200 mm 7.9 inches 14011520 320 mm 12.6 inches 14011532 400 mm 15.7 inches \(14011540^{(2)}\) & \[
\begin{gathered}
4 x \\
27090045
\end{gathered}
\] \\
\hline
\end{tabular}
(1) Defeatable handle.
(2) Shaft guide reference 14290000 is required for shaft length over 15.7 inches \((400 \mathrm{~mm})\).

\section*{1500 VDC - Back plate mounting}

Due to UL98B voltage limitation at 1000 VDC, these switches are certified per UL at 1000 VDC and self-certified at 1500 VDC.


\footnotetext{
(1) Defeatable handle.
(2) Shaft guide reference 14290000 is required for shaft length over 15.7 inches \((400 \mathrm{~mm})\).
}

\section*{SIRCO PV UL98B}

Load break switches for photovoltaic applications
from 100 to 2000 A, up to 1500 VDC

\section*{Accessories}

\section*{External operation}

\section*{Use}

In a combiner box, located close to the solar cell strings, or located close to the inverter, we recommend to use a door interlocked external handle for its safety features.
Door interlocked external operation handles include an escutcheon, are padlockable and must be utilised with an extension shaft.

\section*{Example}

The locking function of the enclosure in the "ON" position will force the operator to safely disconnect and isolate the solar cell strings prior to any intervention. Opening the door when the switch is on "ON" position is possible by defeating the locking function using a tool (authorized persons only). The interlocking function is restored when the door is closed back.
\begin{tabular}{|l|c|c|c|c|}
\hline Frame size & \(\begin{array}{c}\text { Handle } \\
\text { type }\end{array}\) & Handle colour & \(\begin{array}{c}\text { Nema degree of } \\
\text { protection }\end{array}\) & Reference \\
\hline \multirow{3}{*}{\(\begin{array}{l}\text { B4 } \ldots \text { B5 } \\
\text { B4 }\end{array}\)} & & Slack
\end{tabular}\()\)


Shaft for external handle
Use
Standard lengths:
Other lengths: please consult us.
- 7.9 in / 200 mm ,
- 12.6 in / 320 mm ,
- 15.7 in / 400 mm .
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Frame size & Handle type & Dimension (inches) & \[
\text { Dimension } \mathrm{X}
\]
(mm) & Length (inches) & Length (mm) & Reference \\
\hline \multirow{3}{*}{B4} & \multirow{6}{*}{S2} & 6 ... 11.6 & 150... 295 & 7.9 & 200 & 14001020 \\
\hline & & 6 ... 16.3 & 150 ... 415 & 12.6 & 320 & 14001032 \\
\hline & & 6 ... 19.4 & 150... 495 & 15.7 & 400 & 14001040 \\
\hline \multirow{3}{*}{B5} & & 8 ... 12.9 & 203 ... 328 & 7.9 & 200 & 14001020 \\
\hline & & 8 ... 17.6 & \(203 . . .448\) & 12.6 & 320 & 14001032 \\
\hline & & \(8 . . .20 .7\) & \(203 . .525\) & 15.7 & 400 & 14001040 \\
\hline \multirow{3}{*}{B6} & \multirow{3}{*}{S3} & 8.70 ... 13.50 & \(220 \ldots 343\) & 7.9 & 200 & 14011520 \\
\hline & & 8.70 ... 18.23 & \(220 . . .463\) & 12.6 & 320 & 14011532 \\
\hline & & 8.70 ... 21.38 & \(220 . . .543\) & 15.7 & 400 & 14011540 \\
\hline \multirow{3}{*}{B7} & \multirow{3}{*}{S4} & \(12 . . .14 .4\) & \(305 . .366\) & 7.9 & 200 & 14011520 \\
\hline & & \(12 . . .19 .1\) & \(305 . . .485\) & 12.6 & 320 & 14011532 \\
\hline & & \(12 . . .22 .2\) & \(305 . .564\) & 15.7 & 400 & 14011540 \\
\hline \multirow{3}{*}{\(B 4_{\text {ds }}\)} & \multirow{3}{*}{S2} & \(12 . .14 .3\) & \(305 \ldots 363\) & 7.9 & 200 & 14001020 \\
\hline & & \(12 . . .19\) & 305 ... 483 & 12.6 & 320 & 14001032 \\
\hline & & \(12 . .22 .10\) & \(305 . .561\) & 15.7 & 400 & 14001040 \\
\hline \multirow{3}{*}{\(B 5_{\text {ds }}\)} & \multirow{3}{*}{S3, S4} & \(16 . . .18 .4\) & 406 ... 467 & 7.9 & 200 & 14011520 \\
\hline & & \(16 . . .23 .1\) & 406 ... 589 & 12.6 & 320 & 14011532 \\
\hline & & \(16 . . .26 .3\) & \(406 \ldots 668\) & 15.7 & 400 & 14011540 \\
\hline \multirow[b]{2}{*}{B6ps} & \multirow{4}{*}{V1} & \(20 . . .28 .1\) & \(508 \ldots 714\) & 12.6 & 320 & 41993018 \\
\hline & & \(20 . .31 .3\) & \(508 \ldots 795\) & 15.7 & 400 & 41993019 \\
\hline \multirow[b]{2}{*}{\(B 7{ }_{\text {DS }}\)} & & \(20 . . .28 .1\) & \(508 \ldots 714\) & 12.6 & 320 & 41993018 \\
\hline & & \(20 . . .39 .4\) & \(508 \ldots 795\) & 15.7 & 400 & 41993019 \\
\hline
\end{tabular}



\section*{S-type handle adapter}

Use
For handles S2, S3 and S4.

Dimensions
Increases the distance between the handle grip and the door by 12 mm , for better handling.
\begin{tabular}{|l|c|c|c|}
\hline Colour & Nema degree of protection & \begin{tabular}{l} 
To be ordered \\
in multiples of
\end{tabular} & Reference \\
\hline Black & \(1,3 R, 12\) & 10 & 14930000 \\
\hline
\end{tabular}

\section*{Alternative S-type handle cover colours}

Use
For handles S2, S3 and S4.
Other colours: please consult us.
\begin{tabular}{|l|c|c|c|}
\hline \begin{tabular}{l} 
Handle \\
colour
\end{tabular} & Handle type & \begin{tabular}{c} 
To be ordered \\
in multiples of
\end{tabular} & Reference \\
\hline Light grey & S2, S3 & 50 & 14010001 \\
\hline Dark grey & S2, S3 & 50 & 14010011 \\
\hline Light grey & S4 & 50 & 14010031 \\
\hline Dark grey & S4 & 50 & 14010041 \\
\hline
\end{tabular}


\section*{Auxiliary contact}

Use
Pre-break and signalling of positions 0 and I:
-1 to 2 NO/NC auxiliary contacts,
- 1 to 2 low level NO/NC auxiliary contacts.

NO/NC contact
\begin{tabular}{|c|c|c|c|}
\hline Frame size & Position AC & Type & Reference \\
\hline \multirow[b]{2}{*}{B4 ... B7} & 1 contact & \multirow{3}{*}{NO/NC} & 27990021 \\
\hline & 2 contacts & & 27990022 \\
\hline \(B 4_{\text {DS }} \ldots \mathrm{C} 7_{\text {DS }}\) & 1 contact & & 41590021 \\
\hline
\end{tabular}

Low level NO/NC auxiliary contacts
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Frame size } & Position AC & Type & Reference \\
\hline \(\mathrm{B} 4 \ldots \mathrm{~B} 7\) & 1 contact & & 27990121 \\
\hline \(\mathrm{~B} 4_{D S} \ldots 7_{D S}\) & 2 contacts & NO/NC & 1 contact \\
& & & 41990122 \\
\hline
\end{tabular}


\section*{Terminal screen}

Use
Top or bottom protection against direct contact with terminals or connection parts.
\begin{tabular}{|c|c|c|c|c|}
\hline Frame size & No. of poles & Position & Pack & Reference \\
\hline B4 & 2 P & top or bottom & 1 unit & 27983021 \\
\hline B5 & 3 P & top or bottom & 1 unit & 27983041 \\
\hline B5 & 4 P & top or bottom & 1 unit & 27984041 \\
\hline B6 & 4 P & top or bottom & & 27984061 \\
\hline B7 & 4 P & top or bottom & 1 unit & 27984121 \\
\hline \(B 4{ }_{\text {ds }}\) & 2 P & top or bottom & 1 unit & 41583021 \\
\hline \multirow[t]{2}{*}{B5 Ds} & 6 P & top or bottom & 1 unit & 41583041 \\
\hline & 8 P & top or bottom & 1 unit & 41584041 \\
\hline B6os & 8 P & top and bottom & 2 units & 27988061 \\
\hline \(B 7{ }_{\text {dS }}\) & 8 P & top or bottom & 1 unit & 27984121 \\
\hline
\end{tabular}


\section*{SIRCO PV UL98B}

Load break switches for photovoltaic applications
from 100 to 2000 A, up to 1500 VDC

\section*{Accessories (continued)}

Bridging bars for connecting poles in series
Use
The bridging bars will make easy the connection of the poles in series, allowing the following configurations \({ }^{(1)}\). (1) Other connections: refer to mounting instructions.

1000 VDC
\begin{tabular}{|c|c|c|c|c|}
\hline Frame size & Rating (A) & Quantity to be ordered & Fig. & Reference \\
\hline \multicolumn{5}{|l|}{1 PV circuit} \\
\hline B4 & 100 & 1 & 1 & 27091020 \\
\hline B4 & 200 & 1 & 1 & 27091020 \\
\hline B4 & 250 & 1 & 1 & 27091020 \\
\hline B5 & 325 & 1 & 1 & 27091041 \\
\hline B5 & 400 & 2 & 2 & 27091041 \\
\hline B6 & 600 & 2 & 3 & 27090062 \\
\hline B7 & 800 & 2 & 3 & 27090081 \\
\hline B7 & 1200 & 2 & 3 & 27090121 \\
\hline B7 \({ }_{\text {ds }}\) & 2000 & 2 & 3 & 27090121 \\
\hline \multicolumn{5}{|l|}{2 PV circuits} \\
\hline B4 \({ }_{\text {ds }}\) & 100 & 2 & 1 & 27091020 \\
\hline B4 \({ }_{\text {ds }}\) & 200 & 4 & 4 & 27091020 \\
\hline B5 & 325 & 2 & 5 & 27090027 \\
\hline B5 & 400 & 2 & 6 & 27090045 \\
\hline B5 & 400 & 2 & 6 & 27090045 \\
\hline B6 \({ }_{\text {ps }}\) & 600 & 4 & 3 & 27090062 \\
\hline B7 \({ }_{\text {ds }}\) & 800 & 4 & 3 & 27090121 \\
\hline B7 \({ }_{\text {ds }}\) & 1200 & 4 & 3 & 27090121 \\
\hline \multicolumn{5}{|l|}{4 PV circuits} \\
\hline B5 \({ }_{\text {ds }}\) & 350 & 2 & 6 & 27090045 \\
\hline
\end{tabular}

1500 VDC
\begin{tabular}{|c|c|c|c|c|}
\hline Frame size & Rating (A) & Quantity to be ordered & Fig. & Reference \\
\hline \multicolumn{5}{|l|}{1 PV circuit} \\
\hline B5 & 275 & 2 & 5 & 27090027 \\
\hline B5 & 325 & 2 & 5 & 27090027 \\
\hline B5 & 400 & 2 & 6 & 27090045 \\
\hline B6 \({ }_{\text {ds }}\) & 600 & 4 & 3 & 27090062 \\
\hline B7 \({ }_{\text {d }}\) & 800 & 4 & 3 & 27090121 \\
\hline B7 \({ }_{\text {ds }}\) & 1000 & 4 & 3 & 27090121 \\
\hline \multicolumn{5}{|l|}{2 PV circuits} \\
\hline B5 \({ }_{\text {ds }}\) & 275 & 4 & 5 & 27090027 \\
\hline \(B 5{ }_{\text {ds }}\) & 350 & 4 & 6 & 27090045 \\
\hline
\end{tabular}

Bridging bars for connecting poles in series (continued)




Fig. 5


Fig. 6

\section*{SIRCO PV UL98B}

Load break switches for photovoltaic applications
from 100 to 2000 A, up to 1500 VDC

\section*{Accessories (continued)}

\section*{Cage terminals}

Use
Connection of bare copper cables onto the terminals (without lugs).
Optional fan out kit for ratings of 800 to 1200 A for connecting several cables to the switch.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Frame size & \begin{tabular}{l}
Rating max \\
(A)
\end{tabular} & Numbrer and size of cables & Max. number of connections per terminal & Type of cable & Quantity & Reference \\
\hline \multirow[b]{2}{*}{B4-B4 \({ }_{\text {dS }}\)} & \multirow[b]{2}{*}{\(100 \ldots 200\)} & 1 conductor (\#6-300MCM) & 1 & \(\mathrm{Cu} / \mathrm{Al}\) & 2 lugs & 39542020 \\
\hline & & 2 conductors (\#4-2/0) & 1 & \(\mathrm{Cu} / \mathrm{Al}\) & 2 lugs & 39542025 \\
\hline \multirow[b]{2}{*}{B4-B4 \({ }_{\text {ds }}\)} & \multirow[b]{2}{*}{325 ... 400} & 1 conductor (\#2-600MCM) & 1 & \(\mathrm{Cu} / \mathrm{Al}\) & 2 lugs & 39542040 \\
\hline & & 2 conductors (\#6-350MCM) & 1 & \(\mathrm{Cu} / \mathrm{Al}\) & 2 lugs & 39542041 \\
\hline B6-B6 DS \(^{\text {d }}\) & 600 & 2 conductors (\#2-600MCM) & 1 & \(\mathrm{Cu} / \mathrm{Al}\) & 2 lugs & 39542060 \\
\hline \multirow[t]{2}{*}{B7} & \multirow[b]{2}{*}{\(800 . .1200\)} & 2 conductors (\#2-600MCM) & 2 & \(\mathrm{Cu} / \mathrm{Al}\) & 2 lugs & 39542060 \\
\hline & & 2 conductors (\#2-600MCM) & \(3{ }^{(1)}\) & \(\mathrm{Cu} / \mathrm{Al}\) & 3 lugs & 39543060 \\
\hline \multirow[b]{2}{*}{\(B 7_{\text {ds }}\)} & \multirow[b]{2}{*}{2000} & 2 conductors (\#2-600MCM) & \(2^{(2)}\) & \(\mathrm{Cu} / \mathrm{Al}\) & 2 lugs & 39542060 \\
\hline & & 2 conductors (\#2-600MCM) & \(3^{(3)}\) & \(\mathrm{Cu} / \mathrm{Al}\) & 3 lugs & 39543060 \\
\hline
\end{tabular}
(1) Order a fan out kit reference 27091203 for connecting 3 connectors per terminal ( 6 in total for the switch).
(2) 2 connectors per terminal with the connection kit 27291200.
(3) 3 connectors per terminal with the connection kits 27291201 and 27091202.

\section*{Copper bar connection kits}

Use
To allow connection between the two power terminals from a same pole for 2000 A ratings. (Fig. 1, Fig. 2 and Fig. 3)

Top or bottom flat connection
\begin{tabular}{|l|l|c|c|c|c|}
\hline \multirow{3}{*}{ Frame size } & Rating (A) & Figure & \begin{tabular}{c} 
Quantity to \\
order per \\
pole
\end{tabular} & \begin{tabular}{c} 
Number of \\
terminals
\end{tabular} & Reference \\
\hline \multirow{3}{*}{ B7DS } & \(800 \ldots 1000\) & 1 & 1 & 2 & 27291200 \\
\cline { 2 - 6 } & 2000 & 2 & 1 & 3 & 27291202 \\
\cline { 2 - 6 } & \multirow{2}{*}{27291200} \\
\hline
\end{tabular}

Top or bottom edgewise connection
\begin{tabular}{|l|l|c|c|c|c|}
\hline Frame size & Rating (A) & Figure & \begin{tabular}{c} 
Quantity to \\
order per \\
pole
\end{tabular} & \begin{tabular}{c} 
Number of \\
terminals
\end{tabular} & Reference \\
\hline\(B 7_{D S}\) & \(800 \ldots 2000\) & 3 & 1 & 3 & 27291201 \\
\hline
\end{tabular}

Fig. 1


Fig. 3


\section*{Characteristics}

SIRCO PV UL98B switches have dual UL98B and IEC 60947-3 approval. Due to the difference in the standard test conditionS, an identical product can have 2 different ratings:
- a "rating" as per UL98B
- a "rated current" as per IEC 60947-3

\section*{as per standard UL98B}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Rating (A) & & \multicolumn{4}{|c|}{100 A} & \multicolumn{4}{|c|}{200 A} \\
\hline Number of circuits & Rated voltage & (A) & Number of pole(s) in series per polarity & Number of pole(s) of the device & Frame size & (A) & Number of pole(s) in series per polarity & Number of pole(s) of the device & Frame size \\
\hline 1 circuit & 1000 VDC & 100 & 2 P & 2 P & B4 & 200 & 2 P & 2 P & B4 \\
\hline 2 circuits & 600 VDC & 100 & 1 P & 2 P & B4 & 130 & 1 P & 2 P & B4 \\
\hline 2 circuits & 1000 VDC & 100 & 2 P & 4 P & B4 DS \(^{\text {d }}\) & 200 & 2 P & 4 P & B4 \(\mathrm{DS}^{\text {d }}\) \\
\hline 4 circuits & 600 VDC & 100 & 1 P & 4 P & \(B 4{ }_{\text {ds }}\) & 130 & 1 P & 4 P & \(B 4{ }_{\text {ds }}\) \\
\hline \multicolumn{10}{|l|}{Short-circuit capacity at 1000 VDC (any circuit breaker)} \\
\hline Prospective short-circuit current (k & rms DC) & & \(10^{(1)}\) & & & & \(10^{(1)}\) & & \\
\hline \multicolumn{10}{|l|}{Connection terminals} \\
\hline \multicolumn{2}{|l|}{Min. connection wire range/ AWG} & \multicolumn{4}{|c|}{\#6} & \multicolumn{4}{|c|}{\#6} \\
\hline \multicolumn{2}{|l|}{Max. connection wire range/ AWG} & \multicolumn{4}{|c|}{300MCM} & \multicolumn{4}{|c|}{300MCM} \\
\hline \multicolumn{10}{|l|}{Mechanical characteristics} \\
\hline \multicolumn{2}{|l|}{Durability (number of operating cycles)} & \multicolumn{4}{|c|}{10000} & \multicolumn{4}{|c|}{10000} \\
\hline Tightening torque (lbs.in/Nm) & & \multicolumn{4}{|c|}{88.5/10} & \multicolumn{4}{|c|}{88.5/10} \\
\hline \multicolumn{10}{|l|}{Auxiliary contact} \\
\hline \multicolumn{2}{|l|}{Electrical characteristics} & \multicolumn{4}{|c|}{A300} & \multicolumn{4}{|c|}{A300} \\
\hline
\end{tabular}
as per standard IEC 60947-3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Rated current & & & \multicolumn{4}{|c|}{160 A} & \multicolumn{4}{|c|}{250 A} \\
\hline Thermal current at \(40^{\circ} \mathrm{C}\) (A) & & & \multicolumn{4}{|c|}{160} & \multicolumn{4}{|c|}{250} \\
\hline Thermal current at \(50^{\circ} \mathrm{C}\) (A) & & & \multicolumn{4}{|c|}{160} & \multicolumn{4}{|c|}{250} \\
\hline Thermal current at \(60^{\circ} \mathrm{C}\) (A) & & & \multicolumn{4}{|c|}{160} & \multicolumn{4}{|c|}{250} \\
\hline Rated insulation voltage \(\left.\mathrm{U}_{\mathrm{i}} \mathrm{M}\right)\) & & & \multicolumn{4}{|c|}{1500} & \multicolumn{4}{|c|}{1500} \\
\hline \multicolumn{3}{|l|}{Rated impulse withstand voltage \(\mathrm{U}_{\text {imp }}\) (kV)} & \multicolumn{4}{|c|}{12} & \multicolumn{4}{|c|}{12} \\
\hline Number of circuits & Rated voltage & Utilisation category & (A) & Number of pole(s) in series per polarity & Number of pole(s) of the device & Frame size & (A) & Number of pole(s) in series per polarity & Number of pole(s) of the device & Frame size \\
\hline 1 circuit & 1000 VDC & DC-21 B & 160 & 2 P & 2 P & B4 & 250 & 2 P & 2 P & B4 \\
\hline 1 circuit & 1500 VDC & DC-21 B & 160 & 4 P & 4 P & \(B 4{ }_{\text {DS }}\) & 250 & 4 P & 4 P & \(B 4{ }_{\text {bs }}\) \\
\hline 2 circuits & 1000 VDC & DC-21 B & 160 & 2 P & 4 P & \(B 4{ }_{\text {ds }}\) & 250 & 2 P & 4 P & B4 DS \(^{\text {d }}\) \\
\hline 4 circuits & 600 VDC & DC-21 B & 125 & 1 P & 4 P & \(B 4{ }_{\text {DS }}\) & 160 & 1 P & 4 P & \(B 4{ }_{\text {dS }}\) \\
\hline
\end{tabular}

\footnotetext{
(1) Without fuse during 50 ms .
}

\section*{SIRCO PV UL98B}

Load break switches for photovoltaic applications
from 100 to 2000 A, up to 1500 VDC

Characteristics (continued)

\section*{as per standard UL98B}

as per standard IEC 60947-3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Rated current} & \multicolumn{4}{|c|}{315 A} & \multicolumn{4}{|c|}{275 A} \\
\hline Thermal current at \(40^{\circ} \mathrm{C}(\mathrm{A})\) & & & \multicolumn{4}{|c|}{315} & \multicolumn{4}{|c|}{275} \\
\hline Thermal current at \(50^{\circ} \mathrm{C}(\mathrm{A})\) & & & \multicolumn{4}{|c|}{315} & \multicolumn{4}{|c|}{275} \\
\hline Thermal current at \(60^{\circ} \mathrm{C}(\mathrm{A})\) & & & \multicolumn{4}{|c|}{315} & \multicolumn{4}{|c|}{275} \\
\hline Rated insulation voltage \(\mathrm{U}_{\mathrm{i}}(\mathrm{M})\) & & & \multicolumn{4}{|c|}{1500} & \multicolumn{4}{|c|}{1500} \\
\hline \multicolumn{3}{|l|}{Rated impulse withstand voltage \(\mathrm{U}_{\text {imp }}(\mathrm{kV})\)} & \multicolumn{4}{|c|}{12} & \multicolumn{4}{|c|}{12} \\
\hline Number of circuits & Rated voltage & Utilisation category & (A) & Number of pole(s) in series per polarity & Number of pole(s) of the device & Frame size & (A) & Number of pole(s) in series per polarity & Number of pole(s) of the device & Frame size \\
\hline 1 circuit & 1000 VDC & DC-21 B & 315 & 2 P & 2 P & B4 & 275 & 2 P & 2 P & B5 \\
\hline 1 circuit & 1500 VDC & DC-21 B & 315 & 4 P & 4 P & B4 \({ }_{\text {DS }}\) & 275 & 2 P & 3 P & B5 \\
\hline 2 circuits & 1000 VDC & DC-21 B & 315 & 2 P & 4 P & B4 \(\mathrm{DS}^{\text {S }}\) & 275 & 2 P & 4 P & B5 \\
\hline 4 circuits & 600 VDC & DC-21 B & 160 & 1 P & 4 P & \(B 4{ }_{\text {dS }}\) & 275 & 1 P & 4 P & B5 \\
\hline 4 circuits & 1000 VDC & DC-21 B & - & - & - & - & 275 & 2 P & 8 P & B5 \({ }_{\text {d }}\) \\
\hline 6 circuits & 600 VDC & DC-21 B & - & - & - & - & 275 & 1 P & 6 P & B5 \({ }_{\text {ds }}\) \\
\hline 8 circuits & 600 VDC & DC-21 B & - & - & - & - & 275 & 1 P & 8 P & \(B 5\) ds \\
\hline
\end{tabular}
(1) Without fuse during 50 ms .

\section*{as per standard UL98B}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Rating} & \multicolumn{4}{|c|}{325 A} & \multicolumn{4}{|c|}{350 A} \\
\hline Number of circuits & Rated voltage & (A) & Number of pole(s) in series per polarity & Number of pole(s) of the device & Frame size & (A) & Number of pole(s) in series per polarity & Number of pole(s) of the device & Frame size \\
\hline 1 circuit & 1000 VDC & 325 & 2 P & 2 P & B5 & - & - & - & - \\
\hline 2 circuits & 600 VDC & 215 & 1 P & 2 P & B5 & - & - & - & - \\
\hline 2 circuits & 1000 VDC & 325 & 2 P & 4 P & B5 & 350 & \(3 P\) & 6 P & B5 \({ }_{\text {Ds }}\) \\
\hline 4 circuits & 600 VDC & 215 & 1 P & 4 P & B5 & - & - & - & - \\
\hline 4 circuits & 1000 VDC & 325 & 2 P & 8 P & B5 \(\mathrm{DS}^{\text {d }}\) & 350 & 2 P & 8 P & \(B 5_{\text {ds }}\) \\
\hline 6 circuits & 600 VDC & 215 & 1 P & 6 P & B5 \({ }_{\text {DS }}\) & 215 & 1 P & 6 P & \(B 5{ }_{\text {Ds }}\) \\
\hline 8 circuits & 600 VDC & 215 & 1 P & 8 P & \(B 5{ }_{\text {DS }}\) & 215 & 1 P & 8 P & \(B 5_{\text {DS }}\) \\
\hline \multicolumn{10}{|l|}{Short-circuit capacity at 1000 VDC (any circuit breaker)} \\
\hline Prospective short-circ & rms DC) & & \(10^{(1)}\) & & & & \(10^{(1)}\) & & \\
\hline \multicolumn{10}{|l|}{Connection terminals} \\
\hline Min. connection wire & & & 2x\# & & & & 2x\#6 & & \\
\hline Max. connection wire & & & 600M & & & & 600MC & & \\
\hline \multicolumn{10}{|l|}{Mechanical characteristics} \\
\hline \multicolumn{2}{|l|}{Durability (number of operating cycles)} & \multicolumn{4}{|c|}{6000} & \multicolumn{4}{|c|}{6000} \\
\hline Tightening torque (lbs & & \multicolumn{4}{|c|}{128.3/14.5} & \multicolumn{4}{|c|}{128.3/14.5} \\
\hline \multicolumn{10}{|l|}{Auxiliary contact} \\
\hline \multicolumn{2}{|l|}{Electrical characteristics} & \multicolumn{4}{|c|}{A300} & \multicolumn{4}{|c|}{A300} \\
\hline
\end{tabular}
as per standard IEC 60947-3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Rated current & & & \multicolumn{4}{|c|}{400 A} & \multicolumn{4}{|c|}{500 A} \\
\hline Thermal current at \(40^{\circ} \mathrm{C}\) (A) & & & \multicolumn{4}{|c|}{400} & \multicolumn{4}{|c|}{500} \\
\hline Thermal current at \(50^{\circ} \mathrm{C}(\mathrm{A})\) & & & \multicolumn{4}{|c|}{400} & \multicolumn{4}{|c|}{500} \\
\hline Thermal current at \(60^{\circ} \mathrm{C}(\mathrm{A})\) & & & \multicolumn{4}{|c|}{400} & \multicolumn{4}{|c|}{500} \\
\hline Rated insulation voltage \(\mathrm{U}_{\mathrm{i}} \mathrm{M}\) ) & & & \multicolumn{4}{|c|}{1500} & \multicolumn{4}{|c|}{1500} \\
\hline \multicolumn{3}{|l|}{Rated impulse withstand voltage \(\mathrm{U}_{\text {imp }}\) (kV)} & \multicolumn{4}{|c|}{12} & \multicolumn{4}{|c|}{12} \\
\hline Number of circuits & Rated voltage & Utilisation category & (A) & Number of pole(s) in series per polarity & Number of pole(s) of the device & Frame size & (A) & Number of pole(s) in series per polarity & Number of pole(s) of the device & Frame size \\
\hline 1 circuit & 1000 VDC & DC-21 B & 400 & 2 P & 2 P & B5 & - & - & - & - \\
\hline 2 circuits & 1000 VDC & DC-21 B & 400 & 2 P & 4 P & B5 & 500 & 3 P & 6 P & B5 \({ }_{\text {ds }}\) \\
\hline 4 circuits & 600 VDC & DC-21 B & 275 & 1 P & 4 P & B5 & & & & \\
\hline 4 circuits & 1000 VDC & DC-21 B & 400 & 2 P & 8 P & B5 \(\mathrm{DS}^{\text {s }}\) & 500 & 2 P & 8 P & B5 \({ }_{\text {ds }}\) \\
\hline 6 circuits & 600 VDC & DC-21 B & 275 & 1 P & 6 P & \(B 5_{\text {ds }}\) & 275 & 1 P & 6 P & B5 \({ }_{\text {ds }}\) \\
\hline 8 circuits & 600 VDC & DC-21 B & 275 & 1 P & 8 P & B5 Ds & 275 & 1 P & 8 P & \(B 5_{\text {ds }}\) \\
\hline
\end{tabular}
(1) Without fuse during 50 ms .

\section*{SIRCO PV UL98B}

Load break switches for photovoltaic applications
from 100 to 2000 A , up to 1500 VDC

Characteristics (continued)

\section*{as per standard UL98B}

as per standard IEC 60947-3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Rated current & & & \multicolumn{4}{|c|}{500 A} & \multicolumn{4}{|c|}{800 A} \\
\hline Thermal current at \(40^{\circ} \mathrm{C}(\mathrm{A})\) & & & \multicolumn{4}{|c|}{500} & \multicolumn{4}{|c|}{800} \\
\hline Thermal current at \(50^{\circ} \mathrm{C}\) (A) & & & \multicolumn{4}{|c|}{500} & \multicolumn{4}{|c|}{800} \\
\hline Thermal current at \(60^{\circ} \mathrm{C}(\mathrm{A})\) & & & \multicolumn{4}{|c|}{500} & \multicolumn{4}{|c|}{800} \\
\hline Rated insulation voltage \(\mathrm{U}_{\mathrm{i}}(\mathrm{M})\) & & & \multicolumn{4}{|c|}{1500} & \multicolumn{4}{|c|}{1200} \\
\hline \multicolumn{3}{|l|}{Rated impulse withstand voltage \(\mathrm{U}_{\text {imp }}(\mathrm{kV})\)} & \multicolumn{4}{|c|}{12} & \multicolumn{4}{|c|}{12} \\
\hline Number of circuits & Rated voltage & Utilisation category & (A) & Number of pole(s) in series per polarity & Number of pole(s) of the device & Frame size & (A) & Number of pole(s) in series per polarity & Number of pole(s) of the device & Frame size \\
\hline 1 circuit & 1000 VDC & DC-21 B & 500 & 2 P & 2 P & B5 & 800 & 4 P & 4 P & B6 \\
\hline 1 circuit & 1500 VDC & DC-21 B & 500 & 2 P & 3 P & B5 & 800 & 8 P & 8 P & B60s \\
\hline 2 circuits & 1000 VDC & DC-21 B & 275 & 1 P & 4 P & B5 & 800 & 4 P & 8 P & B60s \\
\hline 4 circuits & 600 VDC & DC-21 B & 275 & 1 P & 4 P & B5 & - & - & - & - \\
\hline
\end{tabular}
(1) Without fuse during 50 ms .

\section*{as per standard UL98B}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Rating & & \multicolumn{4}{|c|}{800 A} & \multicolumn{4}{|c|}{1200 A} \\
\hline Number of circuits & Rated voltage & (A) & Number of pole(s) in series per polarity & Number of pole(s) of the device & Frame size & (A) & Number of pole(s) in series per polarity & Number of pole(s) of the device & Frame size \\
\hline 1 circuit & 1000 VDC & 800 & 4 P & 4 P & B7 & 1200 & 4 P & 4 P & B7 \\
\hline 2 circuits & 600 VDC & 800 & 3 P & 6 P & \(B 7{ }_{\text {DS }}\) & 1200 & 3 P & 6 P & \(B 7_{\text {DS }}\) \\
\hline 2 circuits & 1000 VDC & 800 & 4 P & 8 P & \(B 7{ }_{\text {DS }}\) & 1200 & 4 P & 8 P & \(B 7{ }_{\text {DS }}\) \\
\hline \multicolumn{10}{|l|}{Short-circuit capacity at 1000 VDC (any circuit breaker)} \\
\hline Prospective short-circuit current (kA & rms DC) & & \(10^{(1)}\) & & & & \(10^{(1)}\) & & \\
\hline \multicolumn{10}{|l|}{Connection terminals} \\
\hline \multicolumn{2}{|l|}{Min. connection wire range/ AWG} & \multicolumn{4}{|c|}{4x\#2} & \multicolumn{4}{|c|}{4x\#2} \\
\hline \multicolumn{2}{|l|}{Max. connection wire range/ AWG} & \multicolumn{4}{|c|}{\(6 \times 600 \mathrm{MCM}{ }^{(2)}\)} & \multicolumn{4}{|c|}{\(6 \times 600 \mathrm{MCM}{ }^{(2)}\)} \\
\hline \multicolumn{10}{|l|}{Mechanical characteristics} \\
\hline \multicolumn{2}{|l|}{Durability (number of operating cycles)} & \multicolumn{4}{|c|}{3500} & \multicolumn{4}{|c|}{3500} \\
\hline Tightening torque (lbs.in/Nm) & & \multicolumn{4}{|c|}{495.7/56} & \multicolumn{4}{|c|}{663.9/75} \\
\hline \multicolumn{10}{|l|}{Auxiliary contact} \\
\hline \multicolumn{2}{|l|}{Electrical characteristics} & \multicolumn{4}{|c|}{A300} & \multicolumn{4}{|c|}{A300} \\
\hline
\end{tabular}
as per standard IEC 60947-3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Rated current & & & \multicolumn{4}{|c|}{1000 A} & \multicolumn{4}{|c|}{1400 A} \\
\hline Thermal current at \(40^{\circ} \mathrm{C}\) (A) & & & \multicolumn{4}{|c|}{1000} & \multicolumn{4}{|c|}{1400} \\
\hline Thermal current at \(50^{\circ} \mathrm{C}\) (A) & & & \multicolumn{4}{|c|}{1000} & \multicolumn{4}{|c|}{1400} \\
\hline Thermal current at \(60^{\circ} \mathrm{C}(\mathrm{A})\) & & & \multicolumn{4}{|c|}{1000} & \multicolumn{4}{|c|}{1400} \\
\hline Rated insulation voltage \(\mathrm{U}_{\mathrm{i}} \mathrm{M}\) ) & & & \multicolumn{4}{|c|}{1200} & \multicolumn{4}{|c|}{1200} \\
\hline \multicolumn{3}{|l|}{Rated impulse withstand voltage \(\mathrm{U}_{\text {imp }}(\mathrm{kV})\)} & \multicolumn{4}{|c|}{12} & \multicolumn{4}{|c|}{12} \\
\hline Number of circuits & Rated voltage & Utilisation category & (A) & Number of pole(s) in series per polarity & Number of pole(s) of the device & Frame size & (A) & Number of pole(s) in series per polarity & Number of pole(s) of the device & Frame size \\
\hline 1 circuit & 1000 VDC & DC-21 B & 1000 & 4 P & 4 P & B7 & 1400 & 4 P & 4 P & B7 \({ }_{\text {ds }}\) \\
\hline 1 circuit & 1500 VDC & DC-21 B & 1000 & 8 P & 8 P & B7 \({ }_{\text {DS }}\) & 1000 & 8 P & 8 P & \(B 7{ }_{\text {ds }}\) \\
\hline 2 circuits & 1000 VDC & DC-21 B & 1000 & 4 P & 8 P & B7 \({ }_{\text {DS }}\) & 1000 & 4 P & 8 P & \(B 7{ }_{\text {ds }}\) \\
\hline
\end{tabular}

\footnotetext{
(1) Without fuse during 50 ms .
(2) Maximum \(6 \times 600\) MCM with fan out kit 27291203.
}

\section*{SIRCO PV UL98B}

Load break switches for photovoltaic applications
from 100 to 2000 A, up to 1500 VDC

Characteristics (continued)

\section*{as per standard UL98B}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Rating & & \multicolumn{4}{|c|}{2000 A} \\
\hline Number of circuits & Rated voltage & (A) & Number of pole(s) in series per polarity & Number of pole(s) of the device & Frame size \\
\hline 1 circuit & 1000 VDC & 2000 & 8 P & 8 P & \(B 7{ }_{\text {DS }}\) \\
\hline \multicolumn{6}{|l|}{Short-circuit capacity at 1000 VDC (any circuit breaker)} \\
\hline \multicolumn{2}{|l|}{Prospective short-circuit current (kA rms DC)} & \multicolumn{4}{|c|}{\(10^{(1)}\)} \\
\hline \multicolumn{6}{|l|}{Connection terminals} \\
\hline \multicolumn{2}{|l|}{Min. connection wire range/ AWG} & \multicolumn{4}{|c|}{4x\#2} \\
\hline \multicolumn{2}{|l|}{Max. connection wire range/ AWG} & \multicolumn{4}{|c|}{\(6 \times 600 \mathrm{MCM}^{(2)}\)} \\
\hline \multicolumn{6}{|l|}{Mechanical characteristics} \\
\hline \multicolumn{2}{|l|}{Durability (number of operating cycles)} & \multicolumn{4}{|c|}{3500} \\
\hline \multicolumn{2}{|l|}{Tightening torque (lbs.in/Nm)} & \multicolumn{4}{|c|}{663.9/75} \\
\hline \multicolumn{6}{|l|}{Auxiliary contact} \\
\hline \multicolumn{2}{|l|}{Electrical characteristics} & \multicolumn{4}{|c|}{A300} \\
\hline
\end{tabular}
as per standard IEC 60947-3
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Rated current} & \multicolumn{4}{|c|}{2200 A} \\
\hline \multicolumn{3}{|l|}{Thermal current at \(40^{\circ} \mathrm{C}\) (A)} & \multicolumn{4}{|c|}{2200} \\
\hline \multicolumn{3}{|l|}{Thermal current at \(50^{\circ} \mathrm{C}\) (A)} & \multicolumn{4}{|c|}{1850} \\
\hline \multicolumn{3}{|l|}{Thermal current at \(60^{\circ} \mathrm{C}(\mathrm{A})\)} & \multicolumn{4}{|c|}{1600} \\
\hline \multicolumn{3}{|l|}{Rated insulation voltage \(\mathrm{U}_{\mathrm{i}} \mathrm{M}\) )} & \multicolumn{4}{|c|}{1200} \\
\hline \multicolumn{3}{|l|}{Rated impulse withstand voltage \(\mathrm{U}_{\text {imp }}(\mathrm{kV})\)} & \multicolumn{4}{|c|}{12} \\
\hline Number of circuits & Rated voltage & Utilisation category & (A) & Number of pole(s) in series per polarity & Number of pole(s) of the device & Frame size \\
\hline 1 circuit & 1000 VDC & DC-21 B & 2200 & 8 P & 8 P & B7 \({ }_{\text {DS }}\) \\
\hline
\end{tabular}
(1) Without fuse during 50 ms .
(2) Maximum \(6 \times 600 \mathrm{MCM}\) with fan out kit 27291203

Pole connections in series
1 PV circuit - 1000 VDC


B6-B7-4P
Grounded

(1)

Ungrounded


Ungrounded

\(B 7 D_{D S}-8 P\)
Grounded
Ungrounded

(1)

(1)
A. Front switch.
B. Rear switch
1. Circuit 1.

1 PV circuit - 1500 VDC

B4-B5-2P
Grounded
\(B 6_{D S}-B 7_{D S}-8 \mathrm{P}\)
Grounded


Ungrounded
A. Front switch.
1. Circuit 1

Load break switches for photovoltaic applications
from 100 to 2000 A, up to 1500 VDC

Pole connections in series (continued)
2 PV circuits - 1000 VDC


4 PV circuits - 1000 VDC

B 5DS - 8P
Grounded



Dimensions (in / mm)
Frame size B4-B5

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Frame size & No. of poles & Unit & A & B & C & H & H1 max. & J & J 1 & J 2 & J 3 & K & K1 & Y \\
\hline \multirow[b]{2}{*}{B4} & \multirow[b]{2}{*}{2 P} & inches & 7.08 & 6.30 & 3.74 & 5.21 & 4.21 & 6.30 & 2.16 & - & 3.94 & 5.31 & 1.89 & 1.51 \\
\hline & & mm & 180 & 160 & 95 & 132.5 & 107 & 160 & 55 & - & 100 & 135 & 48 & 38.5 \\
\hline \multirow[t]{2}{*}{B5} & \multirow[t]{2}{*}{2 P} & inches & 9.05 & 10.23 & 5.04 & 8 & 6.53 & 8.26 & 2.95 & - & 5.12 & 7.67 & 2.65 & 2.08 \\
\hline & & mm & 230 & 260 & 128 & 203 & 166 & 210 & 75 & - & 130 & 195 & 67.5 & 53 \\
\hline \multirow[t]{2}{*}{B5} & \multirow[t]{2}{*}{\(3 P\)} & inches & 9.05 & 10.23 & 4.98 & 8 & 6.53 & 8.26 & 2.95 & 2.56 & - & 7.67 & 2.65 & 2.02 \\
\hline & & mm & 230 & 260 & 126.5 & 203 & 166 & 210 & 75 & 65 & - & 195 & 67.5 & 51.5 \\
\hline \multirow[b]{2}{*}{B5} & \multirow[b]{2}{*}{4 P} & inches & 11.41 & 10.23 & 4.98 & 8 & 6.53 & 10.63 & 5.31 & 2.56 & - & 7.67 & 2.65 & 2.02 \\
\hline & & mm & 290 & 260 & 126.5 & 203 & 166 & 270 & 135 & 65 & - & 195 & 67.5 & 51.5 \\
\hline
\end{tabular}

Frame size B4 Ds \(^{\text {- }}\) - 5 ss

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Frame size & No. of poles & Unit & A & B & C & H & H1 & H1 max. & J & J 1 & J 2 & J3 & K & K1 & Y & Y1 \\
\hline \multirow[b]{2}{*}{\(B 4\) ds} & \multirow[b]{2}{*}{4 P} & inches & 9.60 & 6.30 & 6.37 & 5.08 & 6.93 & 4.21 & 6.30 & 1.37 & - & 3.93 & 5.31 & 2.65 & 1.51 & 5.21 \\
\hline & & mm & 244 & 160 & 162 & 129 & 176 & 107 & 160 & 35 & - & 100 & 135 & 67.5 & 38.5 & 132.5 \\
\hline \multirow[b]{2}{*}{B5ds} & \multirow[b]{2}{*}{6 P} & inches & 11.85 & 10.23 & 9.39 & 8 & 6.51 & 6.53 & 6.26 & 1.37 & 2.56 & - & 7.67 & 2.70 & 2.02 & 7.44 \\
\hline & & mm & 301 & 260 & 238.5 & 203 & 165.5 & 166 & 210 & 35 & 65 & - & 195 & 68.5 & 51.5 & 189 \\
\hline \multirow[b]{2}{*}{B5 \({ }_{\text {ds }}\)} & \multirow[t]{2}{*}{8 P} & inches & 14.21 & 10.23 & 9.39 & 8 & 6.51 & 6.53 & 10.63 & 1.37 & 2.56 & - & 7.67 & 2.70 & 2.02 & 7.44 \\
\hline & & mm & 361 & 260 & 238.5 & 203 & 165.5 & 166 & 270 & 35 & 65 & - & 195 & 68.5 & 51.5 & 189 \\
\hline
\end{tabular}

Load break switches for photovoltaic applications
from 100 to 2000 A, up to 1500 VDC

Dimensions (in / mm) (continued)
Frame size B6

\begin{tabular}{l|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Frame size & \begin{tabular}{c} 
No. of \\
poles
\end{tabular} & Unit & A & B & C & H & H1 & J & J1 & K & K1 & K2 & Y \\
\hline B6 & \(4 P\) & inches & 24.80 & 13.38 & 5.47 & 10.63 & 5.70 & 13.19 & 6.59 & 6.88 & 2.34 & 1.10 & 1.83 \\
\hline
\end{tabular}

Frame size B6ds


Dimensions (in / mm) (continued)
Frame size B7


Taille de boîtier B7Ds


\section*{SIRCO PV UL98B}

Load break switches for photovoltaic applications
from 100 to 2000 A, up to 1500 VDC

Dimensions for external handles (in / mm)
B4 - B4 Ds \(^{-B 5}\)
\begin{tabular}{|c|c|c|}
\hline Handle type & Front operation Direction of operation & Door drilling \\
\hline S2 type &  &  \\
\hline
\end{tabular}
\(B 5 D_{s}-B 6\)
\begin{tabular}{l} 
Handle type \\
\hline S3 type \\
078 \\
Direction of operation
\end{tabular}

\section*{B7}
\begin{tabular}{l} 
Handle type \\
\hline S4 type \\
Front operation \\
Direction of operation
\end{tabular}
\(B 6_{D s}-B 7_{D s}\)
Handle type

\section*{SIRCO PV UL98B}

Load break switches for photovoltaic applications
from 100 to 2000 A, up to 1500 VDC

Bridging bars (in / mm)

B4-B4 \({ }_{D S}\)
27091020


B6-B6ds
27090062


B7
27090081

\(B 4-B 4 D_{D}\)
27091041


27090045


27090027

\(B 7-B 7_{D S}\)
27090121


Mounting orientation
All frames


\(B 4 d s-B 5 d s\)


100 to 250 A
Terminal lugs (in / mm)


2/0



300MCM

400 A


600 to 2000 A

sirco-ul_026_b_1_us_cat

\(2 \times 600 \mathrm{MCM}\)

\section*{SIRCO MOT PV}

\section*{Load break switches for photovoltaic applications from 200 to 3200 A, up to 1000 VDC}

\section*{new}


\section*{Function}

SIRCO MOT PV are three or four pole motorised load break switches, to be used to remotely disconnect the installation or a part of it.
They make and break under load conditions and provide safety isolation for any low voltage circuit dedicated to photovoltaic applications up to 1000 VDC.

\section*{Advantages}

High breaking performance
A glass fibre reinforced polyester break chamber with an arc extinguishing system provides a patented safety disconnection system offering rapid extinguishing of the electric arc up to 1000 VDC and current interruption up to 3200 A.

General characteristics
- Up to 1000 VDC from 200 to 3200 A.
- Patented switching technology.
- Motorised remote control.
- Positive break indication.
- 2 stable positions (I, 0).


\section*{Strong points}
> High breaking performance up to 3200 A, 1000 VDC
\(>\) Motorised remote control
> Manual emergency operation

\section*{Conformity to standards}
\(>\) IEC 60947-3


\section*{Motorised remote control}

SIRCO MOT PV are intended for use in photovoltaic installations within and solar inverters. They can be remotely controlled via volt-free contacts, from either an external automatic controller or a switch.

\section*{M anual emergency operation}

In addition to its motorised operation, the SIRCO MOT PV also includes a manual operation handle, enabling the switch position to be changed directly on the device if required.

References
SIRCO MOT PV 1000 VDC - Back plate mounting
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Rating (A)/ Frame size & Circuit type & No. of poles & Switch body & Bridging bars for connecting poles in series & Auxiliary contact & Terminal screens & Terminal shrouds \\
\hline 200 A / B4 & \multirow{10}{*}{Single PV circuit} & \multirow{10}{*}{4 P} & 19PV 4020 & \[
\begin{gathered}
2 \mathrm{P} \\
26090025^{(1)}
\end{gathered}
\] & \multirow{5}{*}{\[
\begin{aligned}
& 1^{\text {st }} \text { contact NO/NC } \\
& \text { included } \\
& 2^{\text {nd }} \text { contact NO/NC } \\
& 19991002
\end{aligned}
\]} & 4 P & \\
\hline 250 A / B4 & & & 19PV 4025 & \[
\begin{gathered}
4 \mathrm{P} \\
26092025^{(1)}
\end{gathered}
\] & & \(15094025^{(2)}\) & 2694 4021 \({ }^{(3)}\) \\
\hline \(400 \mathrm{~A} / \mathrm{B} 5\) & & & 19PV 4040 & \multirow{3}{*}{\[
\begin{gathered}
2 \mathrm{P} \\
26090063^{(1)} \\
4 \mathrm{P} \\
26092063^{(1)}
\end{gathered}
\]} & & \multirow{3}{*}{\[
\begin{gathered}
4 \mathrm{P} \\
15094063
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
4 \mathrm{P} \\
26944051^{(3)}
\end{gathered}
\]} \\
\hline \(500 \mathrm{~A} / \mathrm{B} 5\) & & & 19PV 4050 & & & & \\
\hline \(630 \mathrm{~A} / \mathrm{B} 5\) & & & 19PV 4063 & & & & \\
\hline \(800 \mathrm{~A} / \mathrm{B6}\) & & & 19PV 4080 & P & \multirow{4}{*}{\[
\begin{aligned}
& 1^{\text {st }} \text { contact NO/NC } \\
& \text { included } \\
& 2^{\text {nd }} \text { contact NO/NC } \\
& 19991032
\end{aligned}
\]} & 4 P & \\
\hline 1000 A / B6 & & & 19PV 4100 & \(26091100^{(1)}\) & & 15094080 & \\
\hline 1600 A / B7 & & & 19PV 4160 & \[
\begin{gathered}
2 \mathrm{P} \\
2609 \mathrm{1160}
\end{gathered}
\] & & 4 P & \\
\hline 2000 A / B7 & & & 19PV 4200 & \multirow[b]{2}{*}{\[
\begin{gathered}
2 \mathrm{P} \\
26091200^{(1)}
\end{gathered}
\]} & & 15094160 & \\
\hline 3200 A / B8 & & & 19PV 4320 & & included & \[
\begin{gathered}
4 \mathrm{P} \\
15094200
\end{gathered}
\] & \\
\hline
\end{tabular}
(1) Connection in series of 2 or 4 poles of the device
(2) 2 pieces: one for top side and another for bottom side.
(3) Terminal shrouds cannot be mounted when bridging bars for connecting poles in series are present.

\section*{Accessories}

\section*{Bridging bars for connecting poles in series}

Use
The bridging bars will make easy the connection of poles in series, allowing the following configurations:
- Bottom/Bottom
- Top/Top
- Top/Bottom
- Bottom/Top

Connection diagrams: see "Pole connections in series" page 89.


Bridging bar 200 ... 250 A
\begin{tabular}{|c|c|c|c|}
\hline Rating (A) & Number of poles of the device in series & Pack & Reference \\
\hline \(200 \ldots 250\) & 2 & 1 piece & 26090025 \\
\hline \(200 \ldots 250\) & 4 & 2 pieces & 26092025 \\
\hline \(400 \ldots 630\) & 2 & 1 piece & 26090063 \\
\hline \(400 \ldots 630\) & 4 & 2 pieces & 26092063 \\
\hline \(800 \ldots 1000\) & 2 & 1 piece & 26091100 \\
\hline 1600 & 2 & 1 piece & 26091160 \\
\hline \(2000 \ldots 3200\) & 2 & 1 piece & 26091200 \\
\hline
\end{tabular}


Bridging bar 2000 ... 3200 A

\section*{Auxiliary contact}

Use
Pre-break and signalisation of position I:
1 to \(2 \mathrm{NO} / \mathrm{NC}\) auxiliary contacts
(1 as standard).
Low level auxiliary contacts: please consult us.

Connection to the control circuit
By 6.35 mm fast-on terminal.
Electrical characteristics
30000 operations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Characteristics} \\
\hline & & \multicolumn{4}{|c|}{Operating current le (A)} \\
\hline Rating (A) & \begin{tabular}{l}
Nominal current \\
(A)
\end{tabular} & \[
\begin{gathered}
250 \text { VAC } \\
\text { AC-13 }
\end{gathered}
\] & \[
\begin{gathered}
400 \mathrm{VAC} \\
\mathrm{AC}-13
\end{gathered}
\] & \[
\begin{gathered}
24 \mathrm{VDC} \\
\mathrm{AC}-13
\end{gathered}
\] & \[
\begin{gathered}
48 \mathrm{VDC} \\
\mathrm{AC}-13
\end{gathered}
\] \\
\hline 200... 630 & 16 & 12 & 8 & 14 & 6 \\
\hline
\end{tabular}
\begin{tabular}{l|c|c|}
\hline \multicolumn{2}{|l|}{ References } \\
\hline \begin{tabular}{l|c|c|} 
NO/NC changeover contact \\
Rating (A)
\end{tabular} & Contact(s) & Reference \\
\hline \(200 \ldots 630\) & \(2^{\text {nd }}\) & 19991002 \\
\hline \(800 \ldots 1600\) & \(2^{\text {nd }}\) & 19991032 \\
\hline \(2000 \ldots 3200\) & \(2^{\text {nd }}\) & included \\
\hline
\end{tabular}


\section*{SIRCO MOT PV}

Load break switches for photovoltaic applications
from 200 to 3200 A, up to 1000 VDC

\section*{Accessories (continued)}

Terminal shrouds

Use
Protection against direct contact with terminals or connecting parts. Not compatible for terminals with bridging bars connected.

Advantage of terminal shrouds
Perforations allow remote thermographic inspection without the need to remove the shrouds.
\begin{tabular}{|c|c|c|c|}
\hline Rating (A) & No. of poles & Position & Reference \\
\hline \(200 \ldots 250\) & \(4 P\) & top and bottom & 26944021 \\
\hline \(400 \ldots 630\) & \(4 P\) & top and bottom & 26944051 \\
\hline
\end{tabular}


\section*{Terminal screens}

Use
Top and bottom protection against direct contact with terminals or connection parts.
\begin{tabular}{|l|c|c|c|}
\hline Rating (A) & No. of poles & Position & Reference \\
\hline \(200 \ldots 250\) & 4 P & top and bottom & 15094025 \\
\hline \(400 \ldots 630\) & 4 P & top and bottom & 15094063 \\
\hline \(800 \ldots 1000\) & 4 P & top and bottom & 15094080 \\
\hline \(1600 \ldots 3200\) & 4 P & top and bottom & 15094200 \\
\hline
\end{tabular}


\section*{2 position padlocking (I-0)}

Use
Enables padlocking in position I (product can be padlocked in position 0 as standard).
Factory fitted.
\begin{tabular}{|l|c|}
\hline Rating (A) & Reference \\
\hline \(200 \ldots 630\) & 15990003 \\
\hline \(800 \ldots 3200\) & 15990004 \\
\hline
\end{tabular}


\section*{Key handle interlocking system}

Use
With the product in manual mode, it enables locking in position 0 using a RONIS EL11AP lock.
Factory fitted.

As standard, locking in position 0 . Optional padlocking in 2 positions: Locking in position 0 and I .
\begin{tabular}{|l|c|}
\hline Rating (A) & Reference \\
\hline \(200 \ldots 630\) & 15091006 \\
\hline \(800 \ldots 3200\) & 15091004 \\
\hline
\end{tabular}


Other specific accessories

\footnotetext{
- Low level auxiliary contacts.
}

Characteristics according to IEC 60947-3
200 to 3200 A
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Thermal current \(\mathrm{I}_{\text {th }}\) at \(40^{\circ} \mathrm{C}\) & 200 A & 250 A & 400 A & 500 A & 630 A & 800 A & 1000 A & 1600 A & 2000 A & 3200 A \\
\hline Rated insulation voltage \(\left.\mathrm{U}_{\mathrm{i}} \mathrm{M}\right)\) & 1200 & 1200 & 1200 & 1200 & 1200 & 1200 & 1200 & 1200 & 1200 & 1200 \\
\hline Rated impulse withstand voltage \(\mathrm{U}_{\text {imp }}\) (kV) & 8 & 8 & 12 & 12 & 12 & 12 & 12 & 12 & 12 & 12 \\
\hline
\end{tabular}

Rated operational currents \(\mathrm{I}_{e}(\mathrm{~A})\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Rated voltage & Utilisation category & Number of poles of the device & Number of pole(s) in series per polarity & Ambient temperature \(\left({ }^{\circ} \mathrm{C}\right)\) & (A) \\
\hline 1000 VDC & DC-21 B & 4 P & 2 P + and 2 P - & 40 & 200 & 250 & 400 & 500 & 630 & 800 & 1000 & 1600 & 2000 & 3200 \\
\hline 1000 VDC & DC-21 B & 4 P & 2 P + and \(2 P\) - & 50 & 200 & 250 & 400 & 500 & 630 & 800 & 1000 & 1600 & 1800 & 3200 \\
\hline 1000 VDC & DC-21 B & 4 P & \(2 P\) + and \(2 P\) - & 60 & 200 & 250 & 400 & 500 & 560 & 800 & 1000 & 1600 & 1600 & 2700 \\
\hline 1000 VDC & DC-21 B & 4 P & 2 P + and \(2 P\) - & 65 & - & - & 400 & 500 & 540 & 800 & 950 & 1520 & 1520 & 2550 \\
\hline
\end{tabular}

Switching time
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1-0 & 0.85 & 0.85 & 0.85 & 0.85 & 0.85 & 0.85 & 0.85 & 0.85 & 0.85 & 0.85 \\
\hline
\end{tabular}

Power supply
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Alim. 230 VAC min. / max. (VAC) & 176/288 & 176/288 & 176/288 & 176/288 & 176/288 & 176/288 & 176/288 & 176/288 \\
\hline
\end{tabular}

\section*{Control supply power demand}

Supply 230 VAC inrush / nominal (VA)
\begin{tabular}{||l|l|l|l|l|l|l|l|l|l|}
\hline \(420 / 100\) & \(420 / 100\) & \(420 / 100\) & \(420 / 110\) & \(450 / 120\) & \(450 / 120\) & \(450 / 120\) & \(450 / 120\) & \(550 / 390\) & \(550 / 390\) \\
\hline
\end{tabular}

\section*{Connection}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Rigid Cu cable cross-section ( \(\mathrm{mm}^{2}\) ) & 95 & 120 & 240 & \(2 \times 150\) & \(2 \times 185\) & \(2 \times 300\) & \(4 \times 185\) & \(6 \times 185\) & - & - \\
\hline Maximum Cu busbar width (mm) & 32 & 32 & 50 & 50 & 50 & 63 & 63 & 100 & 100 & 100 \\
\hline Tightening torque min/max (Nm) & 20/26 & 20/26 & 40/45 & 40/45 & 40/45 & 40/45 & 40/45 & 40/45 & 40/45 & 40/45 \\
\hline
\end{tabular}

Mechanical characteristics
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|}
\hline Durability (number of operating cycles) \({ }^{(1)}\) & 8000 & 8000 & 5000 & 5000 & 5000 & 4000 & 4000 & 3000 & 3000 & 3000 \\
\hline Weight of a 4 pole device (kg) & 7 & 7 & 8 & 13 & 14 & 33 & 33 & 42 & 42 & 69 \\
\hline
\end{tabular}
(1) Improved endurances: Please consult us.

Load break switches for photovoltaic applications
from 200 to 3200 A, up to 1000 VDC

Dimensions 200 to 630 A

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Overall dimensions} & Terminal shrouds & \multicolumn{3}{|c|}{Switch body} & Switch mounting & \multicolumn{10}{|c|}{Connection} \\
\hline Rating (A) & A 4p. & C & AC & F 4p. & H & J & M 4p. & T & U & V & X 4p. & Y & Z & Z3 & AA & BA & CA \\
\hline 200 & 395 & 244.5 & 280 & 378 & 151 & 245 & 210 & 50 & 25 & 30 & 33 & 3.5 & 39.5 & 134.5 & 160 & 130 & 15 \\
\hline 250 & 395 & 244.5 & 280 & 378 & 151 & 245 & 210 & 50 & 25 & 30 & 33 & 3.5 & 39.5 & 134.5 & 160 & 130 & 15 \\
\hline 400 & 459 & 320.5 & 400 & 437 & 221 & 304 & 270 & 65 & 45 & 50 & 37.5 & 5 & 53 & 190 & 260 & 220 & 20 \\
\hline 500 & 459 & 320.5 & 400 & 437 & 221 & 304 & 270 & 65 & 45 & 50 & 37.5 & 5 & 53 & 190 & 260 & 220 & 20 \\
\hline 630 & 459 & 320.5 & 400 & 437 & 221 & 304 & 270 & 65 & 45 & 50 & 37.5 & 5 & 53 & 190 & 260 & 220 & 20 \\
\hline
\end{tabular}

sirco_109_a_1_x_cat
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Overall dimensions & Terminal shrouds & \multicolumn{2}{|l|}{Switch body} & \multirow[t]{2}{*}{Switch mounting M 4p.} & \multicolumn{7}{|c|}{Connection} \\
\hline Rating (A) & B & AC & F 4p. & J 4 p . & & T & U & V & X & Y & Z3 & AA \\
\hline 800 & 370 & 461 & 584 & 386.5 & 335 & 80 & 50 & 60.5 & 60 & 7 & 66.5 & 321 \\
\hline 1000 & 370 & 461 & 584 & 386.5 & 335 & 80 & 50 & 60.5 & 60 & 7 & 66.5 & 321 \\
\hline
\end{tabular}

Load break switches for photovoltaic applications
from 200 to 3200 A, up to 1000 VDC

Dimensions (continued)
1600 to 2000 A


\section*{3200 A}


Bridging bar


400-630A


1600 A


See pole connections in series \({ }^{(1)}\)
4 poles - bottom / bottom

(1) Other connections: refer to mounting instructions

\section*{SIRCO PV PA}

\section*{Pneumatic Actuator for Fire Safety in photovoltaic applications from 160 to 800 A, 1000 VDC}

\section*{new}


\section*{Function}

SIRCO PV PA (Pneumatic Actuator) are PV switch disconnectors actuated by a pneumatic cylinder. They ensure safe on-load breaking and making to provide safe isolation of PV circuits. The pneumatic power supply safety systems are recognized and recommended by firefighters. Sirco PV PA work in a similar way to smoke extraction systems systems and can be connected directly to the same air network.

```

Strong points
> Ultra high reliability
> Flexibility
> Disconnection via remote control
$>$ Tested and certified solution

```

\section*{Conformity to standards}
```

> IEC 947-3
> UTE C 15-712-1/-2
>NF S 61-937

```

\section*{Advantages}

Ultra high reliability
- Making and breaking performed with well proven secured air network (no coils with poor reliability).
- Wide operating temperature from \(-10^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\).
- On-off positions available even in the absence of pneumatic power supply (by manual handle).

\section*{Flexibility}
- Power supply may be provided by \(\mathrm{CO}_{2}\) cartridge, compressed air network or both working together.
- It can be used in combination with the firesafety system's pneumatic roof skydomes.
- Manual or motorized operating modes, local or remote control, single or multiple actuations.
- Integration in different PV system architectures.

Disconnection via remote control
- Safety disconnection performed by secured pneumatic power supply.
- Pneumatic operating pressure from 6 to 12 bars.
- Remote making and breaking with no need to access the roof in case of fire or maintenance operations.

\section*{Tested and certified solution}
- Safety \(\mathrm{CO}_{2}\) power supply tested and verified at 90 bars according to UTE C 15-712-1/-2.
- \(\mathrm{CO}_{2}\) cartridge meets NF S61-939 standard requirements for fire systems

\section*{Example of application}
\(\mathrm{CO}_{2}\) actuator for roof skydomes
and SIRCO PV PA remote control


Operating modes
Connected directly to compressed air network and/or safety \(\mathrm{CO}_{2}\) cartridges

Remote control - single activation
- Manual \(\mathrm{CO}_{2}\) activation.
- Up to 3 commands (open or close).


Remote control - dual function
- Primary safety activation order via \(\mathrm{CO}_{2}\) cartridge (open or close).
- Secondary activation order via compressed air network.


Remote control via compressed air - electric command
- Local + electric or pneumatic remote commands.
- High number of commands.
- Compatible with positive safety.


\section*{Multiple tilting ON and/or OFF}
- Only one operation to disconnect several PV switches safely.


\section*{SIRCO PV PA}

Pneumatic Actuator for Fire Safety in photovoltaic applications
from 160 to 800 A, 1000 VDC

References
SIRCO PV PA
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Rating (A) & Circuit type & Number of poles & \begin{tabular}{c} 
Number of poles in \\
series per polarity
\end{tabular} & \begin{tabular}{c} 
Switch \\
body
\end{tabular} & \begin{tabular}{c} 
Direct \\
handle
\end{tabular} & Bridging bars & \begin{tabular}{c} 
Terminal \\
shrouds
\end{tabular} \\
\hline 250 A
\end{tabular}
(1) Please contact us.

\section*{Characteristics}

Characteristics according to IEC 60947-3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Rated current I (A)} & 250 A & 400 A & 630 A & 800 A \\
\hline \multicolumn{4}{|l|}{Rated insulation voltage Ui M )} & 1200 & 1200 & 1200 & 1200 \\
\hline \multicolumn{4}{|l|}{Rated impulse withstand voltage Uimp (kV)} & 12 & 12 & 12 & 12 \\
\hline \multicolumn{8}{|l|}{Rated operational currents \(\mathrm{I}_{\mathrm{e}}(\mathrm{A})\)} \\
\hline Rated voltage & Utilisation category & Circuit type & No. of poles & (A) & (A) & (A) & (A) \\
\hline 1000 VDC & DC-22 B & Single PV circuit & 4 P & 250 & 400 & 630 & 800 \\
\hline \multicolumn{8}{|l|}{Connection} \\
\hline \multicolumn{4}{|l|}{Maximum Cu rigid cable cross-section ( \(\mathrm{mm}^{2}\) )} & 120 & 240 & 2x185 & 2x240 \\
\hline \multicolumn{4}{|l|}{Maximum Cu busbar width (mm)} & 32 & 32 & 40 & 50 \\
\hline \multicolumn{4}{|l|}{Tightening torque min (Nm)} & 20 & 20 & 40 & 40 \\
\hline \multicolumn{4}{|l|}{Tightening torque max (Nm)} & 26 & 26 & 45 & 45 \\
\hline \multicolumn{8}{|l|}{Mechanical characteristics} \\
\hline \multicolumn{4}{|l|}{Durability (number of operating cycles)} & 10000 & 5000 & 5000 & 5000 \\
\hline \multicolumn{4}{|l|}{Operating effort (Nm)} & 10 & 10 & 14.5 & 14.5 \\
\hline \multicolumn{4}{|l|}{Weight of a 3 pole device (kg)} & 2 & 3.5 & 3.5 & 3.5 \\
\hline
\end{tabular}

Dimensions


Connections and installation

250 A


400 A
sirco-pv_095_a_1_x_cat


\section*{Photovoltaic fuses}


Function
SOCOMEC gPV fuses protect the installation against the inverse over-currents which could occur in photovoltaic installations.

\section*{Advantages}

High breaking capacity
Up to 50 kA at \(1000 \mathrm{VDC}, 30 \mathrm{kA}\) at 1500 VDC.

Product dedicated to PV installations Operating ranges adjusted for small overcurrents specific to PV installations.

High reliability
- Absolute protection over time guaranteed by the simplicity of manufacture and function (Joule effect).
- No downgrading of fuse characteristics over time.

\section*{Improved safety}

The energy released whilst eliminating the fault (fuse blowing) is contained within the cartridge (no degassing).


\section*{Strong points}

Breaking capacity up to 1500 VDC
Product dedicated to PV installations
High reliability
\(>\) Improved safety

\section*{Large range}

Additional range of disconnect switches and fuse bases - dedicated connection accessories

\section*{Conformity to standards}
\(>\) IEC 60269-6
\(>\) IEC 60269-1
IEC 60269-2

\section*{What you need to know}

\section*{Used characteristics}
- Isc:Short circuit current of the string
- Iscmax: short circuit current of the string related to maximum sunlight density
- I \({ }_{\text {RM: }}\) : maximum admitted reverse current
- \(I_{n}\) : fuse rating or fuse rated current (at 25C in a RM disconnect switch)
- \(\mathrm{N}_{\mathrm{c}}\) : number of strings connected in parallel
- \(U_{e}\) : maximum fuse rated voltage
- Uoc max: maximum open circuit voltage in the lowest temperature conditions.

When to protect
A PV string requires an over-current protection when its own maximum admissible reverse current characteristic (lrm) is less than the current generated by the rest of the installation (current generated by the "Nc-1" other strings).

\section*{How to protect}

The overload protection is to be applied at each of the two polarities, regardless of whether the DC installation is earthed or not.

How to choose the fuse protection (see Technical Guide p. 121)
Voltage
\(U_{e}>U_{\text {OC MAX }}\)
In the absence of complementary information use \(U_{\text {OC MAX }}=1,2 \mathrm{U}_{\text {Oc }}\).

Fuse rating determination
Determination of the fuse rated current consists of choosing a protection capable of:
- Supporting without fusing the normal overload current during the periods of maximum sunlight density at the ambient temperature of the enclosure in which the fuse is installed, \(I_{n}>I_{\text {SC MAX }}\) In the absence of complementary information, use \(\mathrm{I}_{\mathrm{SC}} \operatorname{mAx}=1,4 \mathrm{I}_{\mathrm{SC}}\)
- Melting and reliably clearing the fault before the PV modules are damaged by the reverse current. \(I_{n}<I_{\text {RM }}\)

gPV curve
from 1 to 600 A

References
Rated voltage 1000 VDC
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Rating (A)} & \multirow[b]{2}{*}{Fuse size} & \multicolumn{2}{|c|}{Dissipated power} & \multirow[b]{2}{*}{Breaking capacity} & \multirow[b]{2}{*}{Reference} \\
\hline & & W@In & W@0.8 In & & \\
\hline 1 & \(10 \times 38\) & 0,76 & 0,43 & 30 kA & 60PV 0001 \\
\hline 2 & \(10 \times 38\) & 1,54 & 0,84 & 30 kA & 60PV 0002 \\
\hline 3 & \(10 \times 38\) & 1,35 & 0,74 & 30 kA & 60PV 0003 \\
\hline 4 & \(10 \times 38\) & 1,84 & 1,08 & 30 kA & 60PV 0004 \\
\hline 6 & \(10 \times 38\) & 2,50 & 1,40 & 30 kA & 60PV 0006 \\
\hline 8 & \(10 \times 38\) & 2,57 & 1,47 & 30 kA & 60PV 0008 \\
\hline 10 & \(10 \times 38\) & 2,58 & 1,51 & 30 kA & 60PV 0010 \\
\hline 12 & \(10 \times 38\) & 2,61 & 1,42 & 30 kA & 60PV 0012 \\
\hline 15 & \(10 \times 38\) & 2,44 & 1,08 & 30 kA & 60PV 0015 \\
\hline 16 & \(10 \times 38\) & 2,70 & 1,56 & 30 kA & 60PV 0016 \\
\hline 20 & \(10 \times 38\) & 2,99 & 1,75 & 30 kA & 60PV 0020 \\
\hline 25 & \(14 \times 51\) & 5,1 & 2,7 & 10 kA & 60PV 0025 \\
\hline 32 & \(14 \times 51\) & 6,2 & 3,3 & 10 kA & 60 PV 0065 \\
\hline 32 & NH 1 & 8,5 & 4,3 & 50 kA & 60PV 0032 \\
\hline 40 & NH1 & 9 & 4,6 & 50 kA & 60PV 0040 \\
\hline 50 & NH 1 & 10,5 & 5,4 & 50 kA & 60PV 0050 \\
\hline 63 & NH 1 & 12 & 6,1 & 50 kA & 60PV 0063 \\
\hline 80 & NH1 & 15,5 & 7,9 & 50 kA & 60PV 0080 \\
\hline 100 & NH 1 & 16,5 & 8,4 & 50 kA & 60PV 0100 \\
\hline 125 & NH 1 & 17,5 & 8,9 & 50 kA & 60PV 0125 \\
\hline 160 & NH1 & 24 & 12,2 & 50 kA & 60PV 0160 \\
\hline 200 & 2XL & 50 & 28 & 33 kA & 60PV 0200 \\
\hline 250 & 2XL & 60 & 34 & 33 kA & 60PV 0250 \\
\hline 315 & 2XL & 66 & 40 & 33 kA & 60PV 0315 \\
\hline 355 & 2XL & 68 & 42 & 50 kA & 60PV 0355 \\
\hline 400 & 3L & 82 & 48 & 50 kA & 60PV 0400 \\
\hline 500 & 3L & 85 & 50 & 50 kA & 60PV 0500 \\
\hline 600 & 3L & 118 & 92 & 50 kA & 60PV 0600 \\
\hline
\end{tabular}

Rated voltage 1500 VDC
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Rating (A)} & \multirow[b]{2}{*}{Fuse size} & \multicolumn{3}{|c|}{Dissipated power} & \multirow[b]{2}{*}{Breaking capacity} & \multirow[b]{2}{*}{Reference} \\
\hline & & W@In & W @ 0,7 In & W@0.8 In & & \\
\hline 2 & 10x85 & 3,42 & 1,28 & & 10 & 61PV 0002 \\
\hline 4 & \(10 \times 85\) & 2,91 & 1,16 & & 10 & 61PV 0004 \\
\hline 6 & \(10 \times 85\) & 2,65 & 1,1 & & 10 & 61PV 0006 \\
\hline 8 & 10x85 & 2,79 & 1,16 & & 10 & 61PV 0008 \\
\hline 10 & \(10 \times 85\) & 4,38 & 1,81 & & 10 & 61PV 0010 \\
\hline 12 & \(10 \times 85\) & 4,43 & 1,83 & & 10 & 61PV 0012 \\
\hline \(16^{(1)}\) & \(10 \times 85\) & 4,13 & 1,75 & & 10 & 61PV 0016 \\
\hline \(20^{(1)}\) & \(10 \times 85\) & 5,14 & 2,13 & & 10 & 61PV 0020 \\
\hline \(25^{(1)}\) & \(10 \times 85\) & 5,48 & 2,28 & & 10 & 61PV 0025 \\
\hline 200 & 1XL & 61 & & 31 & 30 & 61PV 0200 \\
\hline 400 & 3 L & 91 & & 49 & 30 & 61PV 0400 \\
\hline
\end{tabular}
(1) Rated voltage 1200 VDC.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{gPV knife edge fuse} \\
\hline & Size NH1 & Size 1XL & Size 2XL & Size 3L \\
\hline Description of accessories & Reference & Reference & Reference & Reference \\
\hline Fuse blown auxiliary contact & 56PV 9901 & 56PV 9901 & 56PV 9901 & 56PV 9901 \\
\hline Fuse base recommended & 65PV 1011 & & 65PV 1112 & 65PV 1113 \\
\hline
\end{tabular}

\section*{Ambient temperature derating factor}
\begin{tabular}{|l|}
\hline\(I_{n f}=I_{\text {cgens }} / K_{t}\) \\
\(I_{\text {nf }}-\) gPV fuse rated current. \\
\(I_{\text {scgen }}-\) PV generator short circuit current under STC. \\
\(\mathrm{K}_{\mathrm{t}}-\) derating factor.
\end{tabular}
\begin{tabular}{|l|l|}
\hline Max. ambient temperature (C) & Kt: Derating factor \\
\hline 20 & 1 \\
\hline 40 & 0,92 \\
\hline 45 & 0,90 \\
\hline 50 & 0,87 \\
\hline 55 & 0,85 \\
\hline 60 & 0,82 \\
\hline 65 & 0,79 \\
\hline 70 & 0,76 \\
\hline
\end{tabular}

Standard dimensions (mm) as per IEC 60269-2
gPV cylindrical Fuses

\begin{tabular}{|l|l|l|l|l|}
\hline Size & Striker & A & B & C \\
\hline \(10 \times 38\) & without & 10,3 & 38 & 10,5 \\
\hline \(14 \times 51\) & without & 14,3 & 51,5 & 10,10 \\
\hline \(10 \times 85\) & without & 10,3 & 85 & 10,5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|l|}{gPV knife edge fuse} \\
\hline \multirow[t]{5}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{5}{*}{}} & & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} & Size & Striker & \[
\begin{gathered}
\text { A } \\
\text { maxi }
\end{gathered}
\] & B & C & \[
\begin{gathered}
D \\
\text { maxi }
\end{gathered}
\] & E maxi & \[
\begin{gathered}
\mathrm{F} \\
\text { maxi }
\end{gathered}
\] & G \\
\hline & & & 0 & & & NH1 & without & 137 & 20 & 6 & 67,7 & 39,65 & 52,9 & 40 \\
\hline & & & & & & 1XL & without & 189,8 & 20 & 5,8 & 127,8 & 51 & 51 & 39,8 \\
\hline & & & & & & 2XL & without & 204,5 & 26 & 5,8 & 123,3 & 59,2 & 59,2 & 47,9 \\
\hline & & & & C. & & 3L & without & 204,9 & 32,3 & 6 & 122,3 & 73,5 & 73,5 & 60 \\
\hline
\end{tabular}

\section*{Photovoltaic fuses}
gPV curve
from 1 to 600 A

Time/current operation characteristics
gPV cylindrical fuses \(10 \times 38\)

gPV cylindrical fuses \(14 \times 51\)

gPV cylindrical fuses \(10 \times 85 \mathrm{gPV}\)

gPV knife edge fuse (NH1)


\section*{Photovoltaic fuses}
gPV curve
from 1 to 600 A

Time/current operation characteristics (continued) gPV knife edge fuse (1XL)

gPV knife edge fuse (2XL)

gPV knife edge fuse (3L) - Rated voltage 1000 VDC

gPV knife edge fuse (3L) - Rated voltage 1500 VDC


\section*{Fuse disconnect switches \\ for PV cylindrical fuses \(10 \times 38\) and \(14 \times 51\)}


RM PV \(10 \times 38\)
32 A


RM PV 10×38
50 A

\section*{Function}

RM PV are modular fuse disconnect switches for cylindrical gPV fuses. They provide safety disconnection and protection against overcurrents in any low DC voltage photovoltaic applications. RM PV are fuse disconnect switches with or without light indicators for fuses without striker.

\section*{Advantages}

Improved safety
- Rated voltage of 1000 VDC.
- Self-extinguishing thermoplastic material.
- Protection IP2X.

Product dedicated to PV applications.
Protection against reverse currents thanks to gPV fuses dedicated to PV applications.

Specific format and accessories.
- Modular DIN 45 mm cut-out.
- Interlocking with accessory available.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{References} \\
\hline & \[
\begin{gathered}
32 \mathrm{~A} \\
\hline 10200
\end{gathered}
\] & \[
50 \mathrm{~A}
\] \\
\hline No. of poles & Reference & Reference \\
\hline 1 P & 57PV 0015 & 57PV 0020 \\
\hline 1 P with signalling & 57PV 0L15 & \\
\hline
\end{tabular}

Characteristics according to IEC 60947-3
\begin{tabular}{|c|c|c|}
\hline Thermal current \(\mathrm{t}_{\text {th }}\) & 32 A & 50 A \\
\hline Fuse size & \(10 \times 38\) & \(14 \times 51\) \\
\hline Rated insulation voltage \(U_{i}(\mathrm{M})\) & 1000 & 1000 \\
\hline \multicolumn{3}{|l|}{Fuse rating} \\
\hline Fuse rating (A) & 1... 20 & \(25 . .32\) \\
\hline \multicolumn{3}{|l|}{Power} \\
\hline Rated dissipated power (W) & 3 & 5 \\
\hline \multicolumn{3}{|l|}{Design current derating coefficient for N pole side by side} \\
\hline \(\mathrm{N}=1 \ldots 3\) & 1 & 1 \\
\hline \(N=4 \ldots 6\) & 0.8 & 0.8 \\
\hline \(N=7 \ldots 9\) & 0.7 & 0.7 \\
\hline \(N \geq 10\) & 0.6 & 0.6 \\
\hline \multicolumn{3}{|l|}{Connection} \\
\hline Minimum Cu cable cross-section ( \(\mathrm{mm}^{2}\) ) & 0.75 & 1.5 \\
\hline Maximum Cu rigid cable cross-section ( \(\mathrm{mm}^{2}\) ) & 10 & 35 \\
\hline Tightening torque ( Nm ) & 2.5 & \(2.5 \ldots 3\) \\
\hline \multicolumn{3}{|l|}{Mechanical characteristics} \\
\hline Weight of \(1 \mathrm{P}(\mathrm{kg})\) & 0.1 & 0,15 \\
\hline
\end{tabular}

\section*{Dimensions}

RM PV \(10 \times 38\)
RM PV \(14 \times 51\)


\section*{PV fuse bases}

\section*{Fuse bases for PV applications for NH gPV fuses 32 to 600 A}


\section*{Function}

SOCOMEC fuse bases provide fixed, unipolar or multipolar support for knife edge fuses dedicated to PV applications.

\section*{Advantages}

Improved safety
- Rated voltage of 1000 VDC.
- Self-extinguishing thermoplastic material.
- Kit IP2X (depending on models).

Product dedic ated to PV applications.
Protection against reverse currents thanks to gPV fuses dedicated to PV applications.

Fuse blown indication
Possibility to collect the fuse blown indication (Please see section PV fuses).

Different fixing types
DIN rail or back plate mounting available (depending on models).

The solution for
Small installations up to large PV farms


\section*{Strong points}

\section*{\(>\) Improved safety}
> Product dedicated to PV applications
\(>\) Fuse blown indication
\(>\) Different fixing types
Conformity to standards
\(>\) IEC 60269
\(>\) NF EN 60269-1
\(>\) VDE \(0636-10\)
\(>\) DIN 43620

References
Back plate mounted device
\begin{tabular}{l|c}
\hline \begin{tabular}{l} 
Rating \\
Fuse size \\
No. of poles
\end{tabular} & \begin{tabular}{c}
\(30-160 \mathrm{~A}\) \\
NH1
\end{tabular} \\
\hline R P & Reference \\
65 PV 1011
\end{tabular}
(1) IP20 single-pole kit consisting of 2 connecting blocks, 2 phase separation shields, 2 terminal shrouds and 1 fuse cover.

Dimensions
Fuse bases 30 to 160 A - NH1 size
Fuse bases 200 to 600 A - 2XL and 3L sizes

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Rating \\
(A)
\end{tabular} & \begin{tabular}{l}
Fuse \\
size
\end{tabular} & A & W & C & D & E & F & G & H & K & L & M & N & 0 & P & Q \\
\hline \(30 . . .160\) & NH 1 & 200 & 175 & 60 & 28 & 148 & 77.5 & 35 & 80 & 123 & 250 & M10 & 25 & 30 & 10.5 & 20.5 \\
\hline \(200 . . .355\) & 2XL & 287 & 257 & 64 & 30 & - & 100 & 37 & 140 & 103 & - & M10 & 17.5 & 30 & 10.5 & - \\
\hline \(400 . . .600\) & 3L & 307 & 270 & 68 & 40 & - & 103 & 38 & 140 & - & - & M12 & 25 & 30 & 10.5 & - \\
\hline
\end{tabular}

\section*{SURGYS \({ }^{\circledR}\) G51-PV}

\section*{Surge arrester - Type 2 for photovoltaic installations}


\section*{Function}

SURGYS G51-PV surge Protective Device is designed to ensure protection for photovoltaic supply networks against transient overvoltages. It is compliant with test requirements UTE 61-740-51 and EN 50-539-11 as well as with installation requirements UTE C 15-712-1.

\section*{Advantages}

Monobloc base with plug-in module The SURGYS is supplied complete and ready for installation. Its Monobloc base is fitted with replaceable plug-in modules which, at the end of their service life, can be easily and quickly replaced without having to disconnect the Monobloc base.

\section*{Remote signalling}

The remote plug-in signalling contact allows alarm report to a supervision station.

New 1500 VDC version
Adapted to the protection of high power installations.

\section*{Applications}

Main incoming protection in a photovoltaic network:
- SURGYS G51-PV is installed on the DC side, in the combiner box, close to the solar cell strings, for protecting the downstream \(D C\) equipment from the indirect effects of lightning.
- SURGYS AC, SURGYS D40 for instance, is installed downstream of the inverter for load protection.


\title{
SURGYS \({ }^{\circledR}\) G51-PV
}

Surge arrester - Type 2 for photovoltaic installations


Connection


Characteristics

Network
\begin{tabular}{|c|c|}
\hline work type & 500 VDC / 600 VDC / 800 VDC / 1000 VDC / 1500 VDC \\
\hline PV voltage \(\mathrm{U}_{\text {ocstc }}\) & 500 VDC / 600 VDC / 800 VDC / 1000 VDC / 1500 VDC \\
\hline Max. voltage \(U_{\text {cpl }}\) & 600 VDC (version 500 V ) / 720 VDC (version 600 V ) / 960 VDC (version 800 V) / 1200 VDC (version 1000 V) / \\
\hline
\end{tabular}

Max. voltage \(U_{\text {CPV }}\) 500 VDC / 600 VDC / 800 VDC / 1000 VDC / 1500 VDC 600 VDC (version 500 V) / 720 VDC (version 600 V ) / 200 VDC (version 800 V) / 1200 VDC (version 1000 V )

1500 VDC (version 1500 V )
Protection characteristics
\(\left.\begin{array}{|l|l|l|}\hline \text { Mode of protection } & \begin{array}{l}\text { MC }\end{array} \text { (1): } 500 \mathrm{~V} / 600 \mathrm{~V} / 800 \mathrm{~V} / 1000 \mathrm{~V} / 1500 \mathrm{~V} \\ \mathrm{MD}(2): 800 \mathrm{~V} / 1000 \mathrm{~V} / 1500 \mathrm{~V}\end{array}\right)\)
(1) Common mode. (2) MD: Differential mode.
\(-40 \ldots+85^{\circ} \mathrm{C}\)

\begin{tabular}{l|l}
\hline Type & monobloc design \\
\hline 2 modules dimensions \(\mathrm{W} \times \mathrm{H} \times \mathrm{D} \leq 800\) VDC & \(36 \times 90 \times 67 \mathrm{~mm}\) \\
\hline 3 modules dimensions \(\mathrm{W} \times \mathrm{H} \times \mathrm{D} \leq 1000\) VDC & \(54 \times 90 \times 67 \mathrm{~mm}\) \\
\hline 3 modules dimensions \(\mathrm{W} \times \mathrm{H} \times \mathrm{D} \geq 1500\) VDC & \(54 \times 90 \times 77 \mathrm{~mm}\) \\
\hline Case degree of protection & IP20 \\
\hline Terminal block degree of protection & IP20 \\
\hline Case material & UL94-V0 thermoplastic \\
\hline Network connection cross-section & \(4 \ldots 25 \mathrm{~mm}^{2}\) \\
\hline Earth connection cross-section & \(6 \ldots 25 \mathrm{~mm}^{2}\)
\end{tabular}

References
\begin{tabular}{l|l|c|c|c|c|c|}
\hline
\end{tabular}
(1) Common mode.
(2) MD: Differential mode.


\section*{The complete product range}

Load break switches (AC range)
Manually operated switches ..... p. 110
Visible breaking switches ..... p. 110
Tripping load break switches ..... p. 110
Motorised operation switches ..... p. 110
Fuse protection
Fuse switches ..... p. 111
Fuses ..... p. 112
Fuse disconnectors and bases ..... p. 112
Transfer switch equipment
Manual Transfer switch equipment ..... p. 112
Motorised and automatic Transfer switch equipment ..... p. 113
Electronic protection
Earth leakage relays ..... p. 114
Protection against overvoltages ..... p. 114
Metering, monitoring and power quality
Active and reactive energy meters ..... p. 115
Multifunction measurement units ..... p. 117
Energy measurement for your existing installations ..... p. 117
Network analysers ..... p. 118
Associated software and services ..... p. 118
Sensors, indicators and transducers ..... p. 119

\section*{Load break switches}

Manually operated switches

\section*{SIRCO M}
- From 16 to 125 A
- 3, 4, 6 or 8 poles

\section*{SIRCO MV}
- From 100 to 160 A
- 3 or 4 poles

\section*{SIRCO}
- From 125 to 5000 A
- 3, 4, 6, 8, 9 or 12 poles
- Direct operation or external front or side operation


Visible breaking switches

\section*{SIDER}
- From 125 to 3150 A
- 3 or 4 poles (N poles for SIDER ND)

\section*{SIRCO MV}
- From 100 to 160 A
- 3 or 4 poles

- From 200 to 4000 A
- 690 VAC - AC 23

\section*{Fuse protection}

Fuse switches

\section*{FUSERBLOC}
- From 25 to 1250 A
- 2, 3 or 4 poles
- Direct operation or external front or side operation
- Rear connections


Visible breaking and tripping fuse switches

\section*{FUSOMAT}
- From 250 to 1250 A
- 3 or 4 poles
- Multi-standard IEC, NF, DIN, BS and UR fuses
- Direct operation or external front or side operation
- Tripping via a shunt trip or undervoltage coil


\section*{SIDERMAT combination}
- Visible breaking
- From 630 to 1800 A
- 3 or 4 poles
- IEC, NF and DIN fuses
- Direct operation or external front or side operation


\section*{Fuse switches to protect power semi-conductors}

\section*{FUSERBLOC UR}
- UR fuses from 10 to 2000 A
- 2, 3 or 4 poles
- Direct operation or external front or side operation


\section*{UL/CSA range}

\section*{FUSERBLOC}
- Fuses from 30 to 800 A
- 2, 3 or 4 poles
- CC, J, K fuses
- Direct operation or external front or side operation
- "Flange" type handle
- Accessories for compliance with the modifications to the standard UL 508 A and NFPA 79

\section*{Pre-charge fuse switches}

\section*{FUSERBLOC Live M aintenance DC}
- From 63 to 1600 A
- DIN 43620 UR fuses


\section*{To find out more}

For more information on the fuse protection range, visit our website: www.socomec.com/en/fuse-protection


\section*{"J anus de l'industrie"}

In 2008, our range of S-type handles received the "Janus de l'industrie", awarded by the French design institute with the backing of the Ministry of Foreign Trade. This prestigious label recognised a range that has been very popular with our customers.

\[
\text { JANUS } 2008
\]
\[
\begin{aligned}
& \text { JANUS L'INDUSTRIE } \\
& \text { DE }
\end{aligned}
\]

\section*{Pro Fuse international association}

To make smart choices about electrical protection, visit the website: www.profuseinternational.com

\section*{Fuse protection (continued)}

Fuses
\(g G\) and aM FUSES
- From 0.16 to 125 A
in sizes \(10 \times 38,14 \times 51\) and \(22 \times 58\)
- From 6 to 1250 A
in sizes T000, T00, T0, T1, T2, T3 and T4
- 500 or 690 VAC
- With or without striker

\section*{BS FUSES}
- From 2 to 1250 A, in sizes F1 to F2, A1 to A4, B1 to B4, C1 to C3, D1
- 415,550 or 660 VAC

\section*{UR FUSES}
- From 10 to 2000 A, in sizes \(14 \times 51,22 \times 58\), 0000, 000, 00, 0, 1, 1*, 2, 3
- 690 or 1250 VAC
- With or without striker

\section*{M FUSES}

- From 1250 A to 3200 A

Fuse disconnectors and bases

\section*{RM/RMS}
- From 1 to 100 A, in sizes \(10 \times 38,14 \times 51,22 \times 58\)
- 1 to 4 poles
- With or without signalisation on RMS version ( \(14 \times 51\) and \(22 \times 58\) ) and locking cradle on RMSC version \((14 \times 51)\)


Fuse bases
- From 160 to 2500 A, in sizes 00, 0, 1, 2, 3, 4
- 1, 2, 3 or 4 poles
- With or without signalisation
- IP2 from 160 to 630 A


\section*{Transfer switch equipment}

Manual transfer switch equipment
To find out more about the ATyS M
Download the ATyS M brochure: www.socomec.com/en/brochure-atys-m

- 3 or 4 poles

- Positions: I/0/II

SIRCO VM1 changeover switches
- From 63 to 125 A
- 3 or 4 poles
- Positions: I/0/II, I/I+II/II


\section*{Transfer switch equipment (continued)}

Manual transfer switch equipment

\section*{SIRCOVER}
- From 125 to 3200 A
- 3 or 4 poles
- Positions: I/0/II, I/I+II/II

Manual bypass transfer switch equipment

\section*{сомо С Bypass}
- From 25 to 100 A
- 3+6 or 4+8 poles
- Positions: I/0/II

\section*{SIRCOVER Bypass}
- From 125 to 1600 A
- 3+6 or 4+8 poles
- Positions: I/0/II, I/I+II/II


SIRCOVER ATS Bypass
- From 125 to 1600 A
- 12+4 poles
- Positions: I/0/II


\section*{Remotely operated transfer switch equipment}

\section*{ATyS M 3}
- From 40 to 160 A
- 2 or 4 poles
- External control command


ATyS S \& ATyS Sd
- From 40 to 125 A
- 4 poles
- ATyS Sd: Integrated Dual supply (DPS)
- DC versions available

\section*{ATyS \& ATyS d}
- From 125 to 3200 A
- ATyS d: Integrated Dual supply (DPS)


\section*{Automatic transfer switch equipment}

ATyS M6s \& ATyS M6e
- From 40 to 160 A
- 2 or 4 poles
- Integrated control command
- ATyS M6e: with communication options


\section*{ATyS \(p, g\) \& \(t\)}
- From 125 to 3200 A
- ATyS p: transformer/generating set application, model with energy management functions, communication options and integrated web server

- ATyS t: transformer/transformer application
- ATyS g: transformer/genset application

Universal N/E controllers
ATyS C20/C30
- 2-source changeover switches

ATyS C40
- 2-genset changeover switches



\section*{Added value of IEC 60947-6-1}

The ATyS M, ATyS S and ATyS ranges meet the requirements of IEC 60947-6-1. The purpose of this international standard, which governs manually, remotely or automatically controlled transfer connection equipment, is to define:
1. the equipment specifications,
2. the equipment behaviour under normal and abnormal conditions (e.g. short circuits),
3. the tests designed to confirm that the conditions have been met and the methods for carrying out these tests,
4. the information to be marked on the equipment.

\section*{Electronic protection}

Earth leakage relays
RESYS M40/RESYS M40R
RESYS P40
- Type A
- Modular or flush-mounted unit

Core balance transformers
Circular closed core balance transformers ( \(\triangle I C\) )
- Diameter from 15 to 300 mm
- Different fixing types
- Patented cable locator

Rectangular closed transformers
Rectangular split-core transformers


Protection against overvoltages
SURGYS G100-F/G140-F/
G40-FE/G50-FE
- Surge protection at the top of low voltage installations

\section*{SURGYS G70/D40/E10}
- Surge protection for distribution and equipment protection


To find out more about the core balance transformers

Download the product sheet for core balance transformers: www.socomec.com/en/fiche-tores-differentiels


\section*{Your peace of mind assured}

Our Services \& Technical Assistance department will study and define your installation, commission selected equipment and train the personnel in charge of its use.


\section*{SURGYS RS-3/mA-3/TEL-3}
- Low current surge protection to protect equipment connected to telecommunication and data transmission networks
- Available in 1 or 2-pair versions

\section*{Energy management and measurement}

\section*{Active and reactive energy meters}

\section*{Single-phase kWh meters}

\section*{COUNTIS E00, E02, E03 \& E04}
- Connection up to 32 A
- Class 1 in accordance with IEC 62053-21
- 1 pulse output
- E02: MID EN50470 certified B+D class B modules
- E03: Modbus protocol RS485 communication
- E04: MID EN50470 certified B+D modules, Modbus protocol RS485 communication

COUNTIS E10, E11, E12, E13, E14, E15 \& E16
- Connection 63 A and 80 A
- Class 1 in accordance with IEC 62053-21
- 1 pulse output
- E11: dual tariff
- E12: MID EN50470 certified B+D class B modules
- E13: Modbus protocol RS485 communication
- E14: MID EN50470 certified B+D modules, Modbus protocol RS485 communication
- E15: RS485 M-BUS protocol communication
- E16: MID EN50470 certified B+D modules, M-BUS protocol RS485 communication

Three-phase kWh meters
COUNTIS E20, E21, E23, E24, E25 \& E26
- Connection up to 63 A
- Class 1 in accordance with IEC 62053-21
- 1 pulse output
- E21: dual tariff
- E23: Modbus protocol RS485 communication
- E24: MID EN50470 certified B+D modules, Modbus protocol RS485 communication
- E25: RS485 M-BUS protocol communication
- E26: MID EN50470 certified B+D modules, M-BUS protocol RS485 communication

COUNTIS E30, E31, E32, E33, E34, E35 \& E36
- Connection up to 100 A
- Class 1 in accordance with IEC 62053-21
- 1 pulse output (except E33 and E34)
- E31: dual tariff
- E32: MID EN50470 certified B+D class B modules
- E33: Modbus protocol RS485 communication, 4 tariffs
- E34: MID EN50470 certified B+D class B modules, Modbus protocol RS485 communication, 4 tariffs
- E35: M-BUS protocol communication, 4 tariffs
- E36: MID certified, M-BUS protocol communication, 4 tariffs


Your peace of mind assured
Our Services \& Technical Assistance department will study and define your installation, commission selected equipment and train the personnel in charge of its use.


\section*{MID certification}

What are the advantages of a B+D module MID meter?
- It guarantees a high-quality product.
- It allows electricity to be resold.
- It guarantees a standardised measurement accuracy.


\section*{Measurement \& energy management (continued)}

Active and reactive energy meters (continued)
Three-phase kWh meters (continued)

\section*{COUNTIS E40, E41, E42, E43, E44, 45 \& 46}
- Connection via 5 A CT up to 6000 A
- Display of kWh and kVArh
- Class 1 in accordance with IEC 62053-21
- 1 pulse output (except for E43 and E44)
- E41: dual tariff
- E42: MID EN50470 certified B+D class C modules
- E43: Modbus protocol RS485 communication, 4 tariffs
- E44: MID EN50470 certified B+D class C modules, Modbus protocol RS485 communication, RS485 4 tariffs
- E45: M-BUS protocol RS485 communication 4 tariffs

- E46: MID EN50470 certified B+D class C modules, M-BUS protocol RS485 communication, RS485 4 tariffs

\section*{COUNTIS E50 \& E53}
- Connection via 5 A CT up to 6000 A
- Display of 3I, 3U, 3V, F, kW, kVAh, kVA, PF
- Display of \(\pm \mathrm{kWh}, \pm \mathrm{kVArh}\) and kVAh
- Class 0.5s in accordance with IEC 62053-22
- 1 pulse output (E53 as an option)
- E53: Modbus protocol RS485 communication, 4 tariffs

\section*{COUNTIS E63}
- 3 independent inputs in direct connection up to 100 A
- Class 1 in accordance with IEC 62053-21
- Modbus protocol RS485 communication
- 4 tariffs


Multi-utility concentrators
COUNTIS ECi2 \& ECi3
- Up to 9 multi-utility meters: 7 logical inputs + 2 analogue inputs
- Available load curves for each of the 9 inputs
- Monthly consumption and 10 min average powers stored for 170 days
- RS485 communication through Modbus protocol
- Maximum customisation (choice of the metering unit, currency, etc.)

\section*{MID certification}

What are the advantages of a B+D module MID meter?
- It guarantees a high-quality product.
- It allows electricity to be resold.
- It guarantees a standardised measurement accuracy.


Download the COUNTIS ECiproduct sheet: www.socomec.com/en/fiche-countis-eci


\section*{Measurement \& energy management (continued)}

Multifunction measurement units
Multifunction measurement (MFM)

\section*{DIRIS A10, A17 \& A20}
- Multi measurement
- Metering
- Alarm management
- DIRIS A10: 4 modules
- DIRIS A17: \(72 \times 72 \mathrm{~mm}\) dimensions
- DIRIS A20: \(96 \times 96\) mm dimensions

Optional modules
- Modbus protocol RS485 communication
- 1 logical output

\section*{Energy monitoring (PMD)}

DIRIS A40, A41, A60 \& A80
- \(96 \times 96\) mm
- Multi measurement
- Metering
- Power management (load curves, etc.)
- Harmonic analysis up to level 63
- DIRIS A41 (designed for highly distorted networks): neutral current measurement
- DIRIS A60: detection of events (voltages/currents) and storage of \(1 / 2\) period RMS curves
- DIRIS A80: A60 + monitoring of differential currents - RCM (Residual Current Monitoring)
Optional modules
- 2 pulse outputs
- JBUS/MODBUS RS485 communication
- PROFIBUS/DP RS485 communication
- Ethernet with webserver
- Temperature
- Memory (DIRIS A40/A41)
- 2 analogue outputs
- 2 configurable inputs +2 configurable outputs

\section*{DIRIS BCMS 720}
- Compact distribution circuit monitoring system: up to 72 outputs + 10 inputs
- Measurement and alarms
- MODBUS or SNMP communication
- Block of current transformers or split-core current transformers


\section*{Energy measurement for your existing installations}

\section*{RETROFIT line}

A measurement device (COUNTIS or DIRIS) and three compact split current transformers are combined and optimised to ensure easy commissioning.
The Retrofit Line allows you to easily add metering and measurement points in electrical enclosures which are very restricted in terms of integration.

To find out more about the DIRIS A80
Download the DIRIS A80 product sheet:
www.socomec.com/en/fiche-diris-a80


\section*{61557-12 certification}

A precise reference, IEC 61557-12 is the common denominator for all PMDs (Performance Monitoring Devices), devices designed to measure and monitor electrical parameters in distribution networks.
Respecting this standard ensures your equipment offers a high level of performance.


Current transformers
Socomec offers a complete, highperformance range of current transformers capable of meeting all the


\section*{COUNTIS et DIRIS management} software
- Webserver (included in all Ethernet optional modules): monitors and uses data remotely and without the need for special software, via a web browser.
- Easy Config: configures COUNTIS E, COUNTIS ECi and DIRIS A simply and quickly on a PC.
- Analysis: analyses data to improve the reliability of your electrical installation. Easy Config and Analysis are available to download from the SOCOMEC website: www.socomec.com

\title{
Measurement \& energy management (continued)
}

Network analysers

\section*{DIRIS N300}
- Acquisition, processing and back-up module for measurements, harmonics, alarms, load curves, dips, outages and overvoltages and vector diagrams
- Connectivity via Ethernet
- RS485
- USB Port

\section*{DIRIS N600}
- DIRIS N300 + interharmonic measurements, analysis of transients, flicker and EN 50160 report

\section*{DIRIS D600 display}
- Graphic colour LCD display module with local display and programming of the DIRIS N300 and N600
Optional DIRIS O modules
- Remote modules for centralisation or control/command from analogue or logical outputs/inputs
- Programming of logical functions to create true automatic process functions


Associated software and services

\section*{VERTELIS}

VISION

\section*{VERTELIS VISION}

Centralised monitoring software for electrical installations
The first step in your Energy efficiency policy, VERTELIS VISION is software preinstalled on an industrial PC (box).
It allows information from SOCOMEC metering and measurement devices to be read remotely and displayed on a normal web browser.
Main functions
- Real-time monitoring and logging of SOCOMEC devices
- Remote reading of energy indices with automatic export of reports (xls, pdf)
- Alarm management

VERTELIS VISION can be easily upgraded to the VERTELIS HYPERVIEW software package.

\section*{VERTEL/S \\ HYPERVIEW}

\section*{VERTELIS HYPERVIEW}

Multi-utility energy management software Compile and make sense of your energy data and display the results.
With VERTELIS HYPERVIEW, all the information from the instrumentation is uploaded, aggregated and analysed. The Hyperview \({ }^{\circledR}\) concept means you can easily identify the relevant indicators and meet your energy performance objectives.

\section*{Main functions}
- Optimises your installation to reduce the energy bill by up to \(30 \%\)
- Provides remote reading of the metering points
- Monitors multi-utility consumption (electricity, water, gas, etc.)
- Analyses the data to identify malfunctions
- Communicates energy savings and environmental benefits
- Automatically sends reports by mail, SMS or shared space.

\section*{Your peace of mind assured}

Socomec offers a full range of customised services for your energy efficiency requirements and can help you find the best solution:
- study \& diagnostics,
- advice \& guidance,
- adaptation \& customisation
- implementation,
- training,
- operational support and maintenance.


\section*{VERTELIS box}

VERTELIS software is preinstalled on a dedicated box, which ensures it is reliable and secure.


\section*{Measurement \& energy management (continued)}

Sensors
Shunt
- From 1 to 6000 A, at 100 mV
- Class 0.5

\section*{Current transformers}
- From 5 to 5000 A
- Coiled primary, routing of cables and busbars, and split-cores
- Three-phase version
- Class 0.5-1-0.2S
- Transformers with integrated or snap-on converter

Current transformer automatic short circuit device

\section*{Indicators and transducers}
- Digital and analogue in DIN, Rotex and modular unit
- Ammeters and voltmeters, AC/DC
- Frequency meters, phase-meters and wattmeters
- Digital multi-indicators: MULTIS LMp and LMg (modular) and L72 (72×72)
- Hours run meters
- Phase changeover switches
- Programmable transducers

\section*{To find out more}

For more information about our measurement solutions, visit our website: www.socomec.com/en/current-transformers


\section*{Photovoltaic Application Guide}
Photovoltaic installations
General photovoltaic principles ..... p. 122
The photovoltaic cell. ..... p. 122
The influence of light and temperature ..... p. 122
The photovoltaic architecture ..... p. 123
Module and PV string ..... p. 123
Photovoltaic generator ..... p. 123
Components of a photovoltaic installation ..... p. 124
Inverters ..... p. 124
DC / AC galvanic separation. ..... p. 125
Disconnecting photovoltaic generators
Disconnection ..... p. 126
Emergency disconnection ..... 126
Fire safety systems ..... 126
Switching devices in PV installations ..... p. 126
Protecting photovoltaic generators
Protecting photovoltaic generators against electrical shocks ..... p. 127
Protection against direct contact ..... p. 127
Protection against indirect contact ..... p. 127
Protecting against voltage surges caused by lightning ..... p. 127
Conditions to implement DC lightning arresters ..... p. 127
Protecting photovoltaic generators against voltage surges ..... p. 128
Conditions for implementing lightning arresters on \(A C\) and \(D C\) circuits ..... p. 128
Protecting photovoltaic generators against overcurrents ..... p. 129
Overcurrents on photovoltaic generators ..... p. 129
Sizing PV string overcurrent protections against reverse current ..... p. 131
Selecting the protection against excessive sunlight exposure ..... p. 132
Selecting the protection as per module withstand to reverse current (IRM) ..... p. 132
Selecting the protection for the generator wiring ..... p. 132
Summary ..... p. 134
Protecting photovoltaic installations from damage ..... p. 135

\section*{Uelal Photovoltaic installations}

\section*{General photovoltaic principles}

\section*{The photovoltaic cell}

\section*{Converting solar energy}

In simple terms, energy from the sun is converted into electricity when the photons present in sunlight are absorbed by silicon-based semiconductors (or other appropriate materials) that form the solar panel, thus creating a DC current of a few amps with voltage in the range of a few hundred millivolts.

\section*{The photovoltaic "diode"}

A photovoltaic diode exposed to light acts as a DC current generator, as shown in quadrant Q4 of figure 1.
In the dark, this cell behaves like a normal diode.
If a fault were to occur in the installation or in the cell, this diode can act as a receiver as shown in quadrants Q1and Q3.
Q1 \(=>U>U_{o c}\) : this situation arises when the direct voltage (U) applied to the PV cell is greater than the voltage in an open circuit ( \(U_{o c}\) ), as with a diode polarised "in direct voltage". Q3 \(=>1>I_{\text {sc }}\) : in this case, the direct current (l) sent to the module is greater than the Isc current that it can generate, in short circuit and according to the sunlight it is exposed to, as with a diode polarised "in reversed voltage".
Generally, quadrant Q4 is used reversed to facilitate reading of the behaviour of the photovoltaic generators in "normal"operation.


\section*{The influence of light and temperature}

The available power of a photovoltaic generator is linked to the increase in sunlight, which have a direct impact on the generated current. An increase in temperature will reduce the available power (MPP) by affecting the voltage of the cells.


\section*{Photovoltaic installations}

Photovoltaic architecture
Module and PV string
Placing the cells in series enables a module's available voltage to be increased, whereas placing the cells in parallel increases its available current.



\section*{Photovoltaic generator}

A string's voltage is created when the modules are placed in series. The coupling of strings of the same voltage in parallel will form groups making it possible to increase the current and therefore the power of the generator.


Example: generator and 3-module string.


Example: generator and a group of three 3 -module string.


Example: generator and three groups of three 3-module string.

\section*{Photovoltaic installations}

\section*{Photovoltaic architecture (continued)}

Components of a photovoltaic installation

- Generating DC electricity via photovoltaic panels,
- DC protection with appropriate equipment for:
- disconnection,
- protection against overcurrents,
- protection against voltage surges (atmospheric or from operation),
- additional monitoring of insulation fault,
- DC / AC conversion with inverters,

- AC protection with appropriate equipment for:
- disconnection,
- protection against overcurrents,
- protection against voltage surges (atmospheric or from operation),
- insulation fault detection / checking,

- Connection to the mains with appropriate equipment for:
- metering,
- and depending on the power:
- any external disconnection,
- transforming low voltage to high voltage,
- high voltage disconnection and protection.

\section*{Inverters}

\section*{Centralised inverter installations}

These installations are prone to production stoppage when a fault occurs. This type of architecture is used in domestic applications with power limited to 3 kWc in France and 6 kWc in other countries. With one to three strings in parallel, this configuration can limit the DC protection function to disconnection upstream of the inverter.


\section*{Multi-inverter installations}

In case of a fault or maintenance, the loss of production is limited to the machine concerned. Opting for this type of architecture is done for industrial installations where power can go from several hundred kWc for large roof areas, and several MWc for stations on the ground. Above 250 kWc , connection to the mains would be done via a LV-H step transformer.
- Multi-inverters with individual control

The advantage of this type of architecture is its of simplicity, with the use of inverters that are smaller than those that would have been required with the generators in parallel.

- Multi-inverters with central control This type of architecture enables highly flexible maintenance and management of machine operating time by using only the inverters needed. This method also ensures the inverters are used at their optimum power depending on the sunlight.


\section*{DC / AC galvanic separation}

The choice of whether or not to implement galvanic separation will determine the selection of protection and monitoring devices on both the DC and AC circuits.
The table hereafter shows all the possibilities:
- DC side:
- the voltage class (VLV or LV),
- the installation, "floating or insulated",
- direct functional polarisation or through a resistor.
- AC side:
- the selection of TT, TN or IT neutral systems


\title{
Uslkl Disconnecting photovoltaic generators
}

\section*{Disconnection}

The purpose of disconnection is to ensure the safety of operators by guaranteeing effective separation from the source. This function must be provided for both connections of the inverter(s) on the \(D C\) and \(A C\) circuits. If the generator has several groups of strings, this function should also be provided so that each group can be individually operated.

This disconnection must fulfil the three following functions:
\begin{tabular}{|l|l|l|}
\hline Function & Characteristic & Value \\
\hline Ensure disconnection distance in the air & Impulse voltage (Uimp) & \(5 \times \mathrm{U}_{\text {oc }}\) \\
\hline Guarantee the creepage distance values & Isolation voltage (Ui) & 1.2 Uoc \\
\hline \begin{tabular}{l} 
Provide safe indication of the open position and \\
ensure insulation
\end{tabular} & Positive break indication & \begin{tabular}{l}
3 F or \\
visible \\
breaking
\end{tabular} \\
\hline
\end{tabular}

\section*{Emergency disconnection}

The purpose of emergency disconnection is to ensure the safety of operators and installations in case of electrical shock, bums of fire on or in the equipment. The controls for these devices must be quickly and easily accessible, located near the inverter(s) for the DC and AC circuits.
This disconnection must fulfil the following four functions
\begin{tabular}{|l|l|l|}
\hline Function & Characteristic & Value \\
\hline Guarantee on-load disconnection & \begin{tabular}{l} 
Operating voltage (Ue) \\
Operating current (le) \\
This characteristic requires the manufacturer to respect the current values (low current, critical \\
current of the device), as well as the data set out in standard IEC 60947-3 \\
Time constant (LLR)
\end{tabular} & \begin{tabular}{l}
1.2 U \(_{\text {oc }}\) \\
From 0 to 1.25 Isc (non-standard)
\end{tabular} \\
\hline Ensure omnipolar disconnection & \begin{tabular}{l} 
Simultaneous \\
Galvanic isolation
\end{tabular} & 1 ms \\
\hline Allow access to the controls & \begin{tabular}{l} 
Directly, for domestic applications \\
Directly or by remote control in all fields other than domestic \\
via pneumatic control
\end{tabular} & Air gap \\
\hline Centralisation of controls & DC and AC controls are possible if gathered in the same place & \begin{tabular}{l} 
Direct manual operation / remote operation \\
with shunt trip or undervoltage release / motor / \\
pneumatic actuator
\end{tabular} \\
\hline
\end{tabular}

\section*{Fire safety systems}

A general disconnection for the intervention of firefighters can be required. Ideally this disconnection should be made as close as possible to the PV field.
This function must be provided unless:
- the DC cables are routed externally and entry is direct in each inverter technical room,
- the inverters are positioned externally, on the roof, as close as possible to the modules,
- the DC cables are routed inside the building, with additional protection devices specified depending on the type of technical rooms.
The "fire service disconnection" must generally meet the following requirements:
- The disconnection must act on all the "sources" of the building to be protected:
- the building's consumption supply (e.g.: public supply network),
- the supply of the AC part of the inverter(s), if independent of the consumption mentioned above,
- the supply of the DC part of the inverter(s) or possible batteries.
- The control components must be grouped together.
- The sequencing of the operations should be indiscriminate.
- The devices to be put into operation are electromagnetic disconnection devices (static disconnection is not permitted).
- Control can be direct or via remote control with:
- undervoltage release or
- shunt trip or motor ()
- pneumatic actuation.
- In case of light indication, a white led should indicate the position of the remotely controlled devices \((\mathrm{s})^{*}\) ")

Note:
(*) \(^{*}\) in order to ensure real efficiency, power supply circuits should be achieved by a secured source of energy (UPS) and adequate fireresistant cables.

\section*{Switching devices in PV installations}

Handling of functional or emergency switching devices for general use or maintenance operations in the PV field, should take into account the risk of reverse currents appearing in case of default. The non-compliance of this criteria can cause high electrical hazard during operator handling.
A DC switching device is usually based on an arc extinguishing technology ensuring current flow breaking in one direction, hence the notion of DC "polarised" devices.
In PV applications, possible reverse currents imposes the need to interrupt the current flow in both directions. This notion is taken into account in the forthcoming IEC PV 60947-3 standard (Appendix D).
Moreover, as mentioned in the standard, devices should be able to withstand a minimum of operation for at least 100 full load cycles, 2900 off-load cycles and 100 cycles when subject to critical current (values depending on the device rating).
In a PV field, a ground leakage failure can occur on a single pole and not simultaneously on both polarities. In such a case the device should ensure breaking on one pole the full \(\mathrm{U}_{\mathrm{oc}}\) voltage. The function is achieved by a 1000 V PV fuse; if a circuit breaker is used, this means the number of poles in series should be multiplied to reach the requested voltage per pole. This precaution first apply to strings or group of strings protections, as well as to general devices in combiner or recombiner boxes.

\section*{Uelki \\ Protecting photovoltaic generators}

\section*{Protecting photovoltaic generators against electric shocks}

\section*{Protection against direct contact}

The DC part of a PV installation must always be considered as live and all active parts must be protected against directs contacts through isolation material or through integratin within an enclosure. This provision is not necessary if the PV voltage remains limited to 60 and 30 VDC in SELV and PELV respectively.

\section*{Protection against indirect contact}

The protection methods should take into account the provisions implemented on the DC and AC circuits as well as the presence or not of galvanic separation between the \(D C\) and \(A C\) sections.
The protection devices should also take into account the following four constraints:
- The impossibility (for costs reason) to monitor and isolate each generator (PV module) individually, to the contrary of a LV installation supplied by centralised sources (HV/LV station, running generator, UPS, etc),
- the level of short circuit current of the photovoltaic generators, when near to their nominal current, makes it difficult to detect faults,
- exposure to weather conditions and the day/night cycles,
- the presence of direct current which can damage insulation and wiring more rapidly over time than alternating current.

Protection from indirect contact is provided by installing class II or reinforced insulation in the entire DC section of the installation. This provision is not necessary if the PV voltage is in SELV and PELV (< 120 V DC).
If DC enclosures are installed in a technical room with access restricted to qualified personnel, this enclosure can be class I, where the protection against indirect contact is supplemented by Supplementary Equipotential Bonding in the room.

\section*{Protecting against voltage surges caused by lightning}

Surges can occur in several ways in a PV installation. They can be:
- Ttransmitted by the distribution network and be of atmospheric origin (lightning) and/or due to operations,
- Generated by lightning strikes near to the buildings and PV installations, or on the building's lightning arresters,
- Generated by electrical field variations due to lightning.

\section*{Conditions to implement DC lightning arresters}

The decision whether to implement lightning arresters depends on the length of the installations exposed to danger and the keraunic level (Nk) of the area. (Nk: lightning strike density).
This critical length varies depending on the types of installation.
For an inverter the length of the installations to be considered is \(\mathrm{L}=\mathrm{Lc} 1+\mathrm{Lc} 2+\mathrm{Lc} 3\).
For an installation with several individual inverters, the length to be taken into account is the length per inverter; for an installation with several inverters with central control, the length to be considered is the sum of all the lengths.

\section*{Protecting photovoltaic generators}

\section*{Protecting photovoltaic generators against voltage surges}

The table below sets out exemptions from lightning conductors.
This approach, based on a risk analysis, does not limit the implementation of protection devices should the protection value become inadequate compared with the value of the installation ( \(\mathrm{P} \gg\) ten or so kW ).
\begin{tabular}{|l|l|l|l|}
\hline Function & Domestic & Ground installation & Large roofs \\
\hline\(L\) crit. \((m l)\) & \(1150 / \mathrm{Nk}\) & \(2000 / \mathrm{Nk}\) & \(4500 / \mathrm{Nk}\) \\
\hline\(L \geq\) crit. & Lightning arrester compulsory & & \\
\hline\(L<L\) crit. & Lightning arrester not compulsory & & \\
\hline With lightning conductor & Lightning arrester compulsory & & \\
\hline
\end{tabular}

Example
L crit. in Strasbourg: domestic \(=57.5-\) ground installation \(=100-\) large roof \(=225\).

\section*{Conditions for implementing lightning arresters on AC and DC circuits}

According to NT C15-100 and the UTE C 15-712-1 guide, the installation conditions for lightning arresters on DC and AC circuits depend on the following different criteria:
- On the DC circuit, a lightning arrester is compulsory for the inverter: - either when there is a lightning conductor,
- or when the length \(L\) between the PV panels and the inverter is \(>c\) crit. \(L\).

A second lightning arrester is recommended to protect the PV panels if \(L>10 \mathrm{~m}\).
- On the AC circuit, a lightning arrester is compulsory for LV switchboard panel (or the general control and protection device):
- either when there is a lightning conductor,
- or when the keraunic level is \(>25\).

A second lightning arrester is necessary to protect the inverter if the distance between the LV switchboard panel (or the general control and protection device)
 and the inverter \(D>10 \mathrm{~m}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & & \multicolumn{2}{|c|}{DC} & \multicolumn{2}{|c|}{AC} \\
\hline & & \multicolumn{2}{|c|}{PV panels - DC inverter} & \multicolumn{2}{|l|}{AC inverter - LV switchboard panel} \\
\hline & & L<10 m & L \(>10 \mathrm{~m}\) & D < 10 m & D > 10 m \\
\hline Installation with lightning conductor & not insulated & - T1 & \(\mathrm{Tl}-\mathrm{Tl}\) & - T1 & \(\mathrm{T} 2-\mathrm{T} 1\) \\
\hline & insulated & - T2 & T2 - T2 & - T1 & T2 - T 1 \\
\hline Installation with no lightning conductor & & - T2 & T2 - T2 & - T2 & T2 - T2 \\
\hline
\end{tabular}

Note T1 = type 1 or class 1 lightning arrester, T2 = type 2 or class 2 lightning arrester.

\section*{Protecting photovoltaic generators}

\section*{Protecting photovoltaic generators against overcurrents}

Overcurrents on photovoltaic generators
In a photovoltaic installation, short-circuits can appear in junction boxes or cables following a ground fault in the generator network. Furthermore, a fault can appear on the lightning arrester of the generator or the one of the inverter, or even on the inverter itself.

Short-circuit at the PV string level
If a short-circuit appears in the PV generator, the faulty string voltage is going to be reduced and modules can be damaged by reverse overcurrents produced by:
- one or several strings in parallel,
- external sources such as batteries,
- or both.


\section*{Protecting photovoltaic generators}

Protecting photovoltaic generators against overcurrents (continued)

Short-circuit at the level of a string recombiner box wiring
In extended installations including a recombiner box, a short-circuit can occur on the string wiring system.


This short-circuit is supplied by several power sources.
1) The short-circuit current supplying the fault is more or less equal to the rated current. The wiring system and devices are sized to withstand the rated current with a safety factor, there is no need to add an overcurrent protection on the output of the string combiner box.
2) The fault is supplied by short-circuit currents from several string recombiner boxes. The wiring system and devices must be protected by an overcurrent protection in the recombiner box.

Short-circuit at the inverter level
In case of inverter internal fault, the short-circuit is supplied by the PV generator and the AC side.


On the AC side, the short-circuit current can be ten times greater than the rated current.
On the DC side, the total short-circuit current is more or less equal to the rated current.
The inverter must be protected by an overcurrent protection on the AC side.

\section*{Protecting photovoltaic generators against overcurrents (continued)}

Sizing overcurrent protections against reverse current in PV strings
The sizing of the string's cables depends very much on the voltage drops; the notions of permissible currents for the wiring protection against overcurrents are generally met automatically and do not require the implementation of protection to provide this function.
The main selection criteria for fuses is the value of \(\mathrm{I}_{\mathrm{RM}}\) (maximum PV reverse current) that the module can withstand temporarily until the selected fuse breaks the faulty current generated following a fault (see figures 2 and 3 below).
The decision whether to use a fuse should be based on the following equation:
```

(N\mp@subsup{C}{max}{}-1) |}\mp@subsup{|}{\mathrm{ SCSTC }}{}\leq\mp@subsup{|}{\textrm{RM}}{}<N\mp@subsup{N}{\mathrm{ max }}{}\mp@subsup{|}{\mathrm{ ScSTC}}{

```

Protection devices against reverse current should be used for PV generators with a number of Nc strings above \(\mathrm{Nc}_{\max }\).
Figure 1 gives the number of strings in parallel \(\mathrm{NC}_{\text {max }}\) that do not require protection according to the value of the current \(l_{\text {RM }}\) of a string in an installation with no storage batteries:


Fig. 1.
Note: generally, in an installation with no storage batteries, the \(\mathrm{I}_{\mathrm{RM}}\) values of PV modules in crystalline silicon are presumed to be between 2 and \(3 I_{\text {scSTc }}\).

The general rule is that each string is protected individually by a protection device. If modules have a very high withstand to reverse current, Np strings can be connected in parallel to a single protection device.
\begin{tabular}{|c|c|}
\hline Reversed current withstand of the module & Npmax \\
\hline \(1.4 \mathrm{I}_{\text {SCSTC }} \leq \mathrm{I}_{\text {RM }}<3.8 \mathrm{I}_{\text {SCSTC }}\) & 1 \\
\hline \(3.8 \mathrm{I}_{\text {SCSTC }} \leq \mathrm{I}_{\text {RM }}<6.2 \mathrm{I}_{\text {SCSTC }}\) & 2 \\
\hline \(6.2 \mathrm{I}_{\text {SCSTC }} \leq \mathrm{I}_{\text {RM }}<8.6 \mathrm{I}_{\text {SCSTC }}\) & 3 \\
\hline \multicolumn{2}{|l|}{General case: \(\left(2.4 \mathrm{~Np}_{\max }-1\right) \mathrm{I}_{\text {SCSTC }} \leq \mathrm{I}_{\mathrm{RM}}<\left(2.4 \mathrm{~Np}_{\max }+1.4\right) \mathrm{I}_{\text {SSSTC }}\)} \\
\hline
\end{tabular}

Information on the IRM given by manufacturers of photovoltaic modules

Some manufacturers specify a max reverse current more or less equal to the nominal short circuit current and a significantly higher fuse rating.

\section*{Protecting photovoltaic generators}

\section*{Protecting photovoltaic generators against overcurrents (continued)}

Protection against excessive sunlight exposure
The use of a fuse over its nominal rating should be avoided. The critical zone is the zone between the nominal current and the nonfusing current (Inf).
This is particularly important for fuses subjected to cyclic temperature fluctuations, typical of PV systems.
The nominal current In of the string's PV fuse should be higher than the maximum operating current of the string, which varies between 1.25 and \(1.6 \mathrm{I}_{\mathrm{scST}}\) depending on the climatic conditions and the sunlight levels.
The PV fuses should not operate, or damage the installation in normal operating conditions in order to avoid operating losses.
In order to meet this requirement, a fuse with a nominal current that is \(40 \%\) higher than the \(\mathrm{I}_{\mathrm{sc}}\) of the PV string is selected.


Inf: non-fusing current of fuses If or 12: maximum fusing current of fuses

\section*{Selecting the protection as per the module withstand to reverse current (IRM)}

According to IEC 61730 standard, the \({ }_{\text {IRM }}\) current corresponds to a 2 hour test at 1.35 IRM; therefore, protection is ensured if the selected fuse operates correctly at a value lower than \(1.35 I_{\text {RM }}\).
The conventional If (or \(\mathrm{I}_{2}\) ) disconnection time of a fuse is 1 hour, so greater than the 2 hours of the module, which provides a safety margin by giving a max fuse current for a specific module.
"gPV" fuses that are compliant with IEC 60269-6 standard, provide PV protection, If \(=1.45 \mathrm{In}\) and can be selected at \(\mathrm{In} \leq \mathrm{I}_{\mathrm{RM}}\).


\section*{Selecting the generator cable protection}

Selecting the cable protection means to define a fuse which will eliminate an overcurrent before it damages the wiring system due to overheating. This function is ensured if the melting current of the fuse is less than 1.45 times the permissible current in the cables \(\left(I_{z}\right)\). This current value \(I_{z}\) should include all the usual derating factors such as ambient temperature, the amount of cables in parallel, etc.


Selection of the fuse for the cables of the group of strings ( N : no. of strings)
\[
\begin{gathered}
\mathrm{I} \mathrm{I} \geq 1.4 \mathrm{I} \text { group }=\mathrm{N} \times 1.4 \mathrm{I} \text { string } \\
\mathrm{I}_{2} \geq 1.45 \mathrm{I}_{\mathrm{z}}
\end{gathered}
\]

\section*{Protecting photovoltaic generators against overcurrents (continued)}

\section*{B reaking capacity of the photovoltaic fuses}

The string's PV fuses should have a breaking capacity greater than or equal to the maximum fault current of the PV system. A value of 25 kA DC is recommended to include any possible provisions for energy storage or possible returns of energy from the distribution network. The time constant of a PV circuit is generally less than \(2 \mathrm{~ms}(L / R)\), the PV fuses accept much higher time constants.

\section*{Type of fuses to use}

The PV fuses must be selected with a type " \(g\) " general usage curve, as they will safely disconnect all the current ranges, from the minimum melting value to the maximum breaking capacity.
"a" series fuses (supplementary type) are totally inappropriate and must not be used under any circumstances, as they risk failing to manage arcs above their minimum breaking capacity.
The use of inappropriate fuses in a PV installation can cause damages to the installation.
Photovoltaic fuse operating voltage
To include the influence of the temperature in "cold" conditions, it is recommended to increase the operating voltage of the fuse to be fitted by \(20 \%\).
\[
U n \geq U_{\text {ocSTc }} \times 1.2
\]

UocSTC: voltage in open circuit of the PV string
Note: the coefficient 1.2 allows variations in voltage UocSTC to be included according to low temperatures down to \(-25^{\circ} \mathrm{C}\) for mono or polycrystalline panels. This coefficient can be adapted for installations when the minimum temperatures are different.

Thermal derating
Although PV fuses dissipate relatively little heat, the internal temperatures of the junction boxes protecting the strings should be taken into account because of the exposure to high ambient temperatures and the large amount of equipment such as blocking diodes or other monitoring equipment.
The rated diversity factors (RDF) specified by standard IEC 61439 are not applicable, as it is necessary to take into account all the circuits at their maximum load and at the same time (diversity factor \(=1\) ).
The derating factors depending on the temperature recommended by the fuse manufacturer should be applied.

\section*{Bipolar protection}

Regardless of the DC network, polarised or floating, protection against reverse currents should be provided for both " + " and " - " polarities. With functional polarisation that can be disconnected, the faulty currents can be looped back by one or the other of the poles.
Furthermore, it is strongly recommended to pair these fuses with adapted fuse breakers to ensure complete safety for the replacement of fuses (IPxxB).
This operation should be carried out off-load and therefore it is essential to provide, in close proximity to these fuse protections, a disconnection switch to ensure on-load breaking of the upstream PV and to provide safety disconnection (isolation distance, guaranteed creepage distances, certain or visible disconnection, etc.). In the recombiner boxes, a switch-disconnector can be added downstream of the fuses to ensure the disconnection function and to avoid the need to access the combiner.
In an installation that is accessible to persons other than authorised or experienced personnel, access to the fuse breaker, lightning arrester and other devices that do not disconnect the installation should be connected to a switch that gives access to this equipment.


\section*{Protecting photovoltaic generators}

Protecting photovoltaic generators against overcurrents (continued)
Summary


2) Load break switches for current flowing in both directions. Enables on-load breaking and provides safety isolation of the group from the PV field. At this level, the reverse current protection is ensured by all the fuses in 1. No other protection is needed at this level of the installation
3) Load break switches for current flowing in both directions. Enables on-load breaking downtream of the fuse and provides safety isolation to achieve maintenance remotely without the need to access the combiner box. No other protection other than 4 is needed at this level of the installation.
4) Overcurrent protection by reverse current on the combiner box and on each polarity if field rated current is \(>1,4\) lgroup.
5) Load break switches without overcurrent protection. Enables on-load breaking and provides safety isolation of the inverter.
\begin{tabular}{|c|c|c|c|c|}
\hline Nc Number of strings on the generator & Maximum reverse current of a string & Obligation of protection & \(I_{n}\) rated current of the string protection devices & \(\mathrm{I}_{2}\) permissible current of the PV string cables \\
\hline 1 & - & \multirow{3}{*}{No} & - & \(\mathrm{I}_{2} \geq 1.25 \mathrm{I}_{\text {scsTC }}\) \\
\hline 2 & \(1.25 \mathrm{IscSTC}^{\text {che }}\) & & - & \(\mathrm{I}_{2} \geq 1.25 \mathrm{IscsTc}\) \\
\hline \(\mathrm{Nc} \leq \mathrm{Nc}_{\text {max }}\) & ( Nc -1) 1.25 Iscsic & & - & \(\mathrm{I}_{2} \geq\) ( \(\left.\mathrm{NC}-1\right) 1.25 \mathrm{I}_{\text {scSTC }}\) \\
\hline \(\mathrm{Nc} \gg \mathrm{Nc}_{\text {max }}\) and \(\mathrm{Np}=1\) & (Ne -1) \(1.25 \mathrm{IscsTc}^{\text {c }}\) & \multirow{2}{*}{Yes} & \[
\begin{gathered}
\mathrm{In} \geq 1.4 \mathrm{I}_{\text {scSTC }} \\
\mathrm{In} \leq \mathrm{I}_{\mathrm{RM}} \\
\hline
\end{gathered}
\] & \(\mathrm{I}_{2} \geq \mathrm{l}_{2}\) \\
\hline \(\mathrm{Nc}>\mathrm{Nc}_{\text {max }}\) and \(\mathrm{Np}>1\) & ( \(\mathrm{Nc}-1\) ) 1.25 Iscsic & & \[
\begin{gathered}
\ln \geq N p 1.4 \mathrm{I}_{\text {scsTC }} \\
\mathrm{In} \leq \mathrm{I}_{\mathrm{RM}}-\left.(\mathrm{Np}-1)\right|_{\mathrm{SCSTC}}
\end{gathered}
\] & \(\mathrm{I}_{2} \geq \mathrm{I}_{2}\) \\
\hline
\end{tabular}

\section*{Protecting photovoltaic installations from insulation fault}

Fault currents in PV generators are strongly dependent on sunlight levels and can be below the \(I_{s c S T}\). Electrical arcs can occur with currents that will not trigger the device protecting against voltage surges.
For this reason, appropriate devices should be utilised to protect against faults that may generate electrical arcs in a PV generator. The main protections to be used are class II IEC 61730-2 standardised modules, and an installation upstream of the class II inverters or with strengthened insulation. The use of inverters with or without galvanic isolation should also be considered.


Preventing arcs in a non-polarised installation and inverter with galvanic separation In this case, the supplementary prevention devices to be installed are permanent insulation testers with audible and/or visual alarms; this equipment should to provide monitoring of faults in a DC installation for Uoc \(\times 1.2\) voltages.
In the case of an extended generator (> 100 kWc ), it is strongly recommended that provision be made for the locating of isolation faults when the system is live.


Preventing arcs in a non-polarised installation and inverter without galvanic separation
In this case, the supplementary protection devices to be used consist of a detection device for direct components that control the automatic disconnection of the connection of the inverter to the network.
It is necessary to add to this device equipment that provides for daily measurement of the isolation of the entire installation (generator and inverter). This measurement is taken when the inverter disconnection system on the AC circuit is in the open position.


Note: These provisions are provided in particular by the RCMU device of the inverters in compliance with prenorm VDE 0126-1.

\section*{Preventing arcs in an installation polarised directly to earth}

This selection requires inverters with galvanic separation to be used. In this case, the supplementary prevention equipment consists of a fuse added in series with the functional earth to limit the fault current, or an automatic disconnection device controlled by a type B differential relay. In order to avoid the blinding of this detection principle by a fault on the connected polarity, monitoring of the isolation of the entire installation, generator and inverter should be carried out daily with the functional earth in open position.
Opening of the protection against voltage surges in series, or the isolation threshold being reached, should trigger a visual and/or audible alarm to alert the operator.


\section*{Protecting photovoltaic generators}

\section*{Preventing photovoltaic installations from insulation fault (continued)}

Preventing arcs in a polarised installation via earth resistance This selection requires inverters with galvanic separation to be used. In this case, the supplementary protection devices consist of an insulation monitoring device with an audible and/or visual alarm; it should cover the damage of the isolation for voltages Uoc \(\times 1.2 . U_{o c}\) \(\times 1.2\).
The alarm threshold includes this resistance.
The resistance should be sized according to the specifications of the panel manufacturer (value and power).

Note: In the case of an installation not monitored during production by BA4
 or BA5 personnel (e.g.: domestic), the fault detection inhibits the restarting of the installation on the next day.

\section*{Ustil Glossary of common photovoltaic terms}

\section*{PV cell}

Fundamental PV device able to generate electricity when it is exposed to light such as sunlight.

\section*{PV module}

The smallest component of interconnected solar cells completely protected against the environment.

\section*{PV string}

Circuit where the PV modules are connected in series to form assemblies, in order to generate the specified output voltage.

\section*{PV group}

Integrated mechanical and electrical assembly of strings and other components to make up a DC electrical current production unit.

\section*{PV group junction box}

Enclosure inside which all the PV strings of all the PV groups are electrically connected and where any protection devices can be placed.

\section*{PV generator}

Assembly of PV generators, also called PV field.

\section*{PV conversion equipment}

Device that transforms DC voltage into AC voltage, also called inverter.

\section*{Standard test conditions (STC)}

Test conditions prescribed in NF EN 60904-3 (C 57-323) for PV cells and modules.
Open circuit voltage \(U_{\text {ocSTC }}\)
Standard test conditions
- at the terminals of a PV module, a PV string, a non-charged PV group (open)
- at the terminals of the DC circuit of the PV conversion equipment.

Short-circuit current \(I_{\text {sCSTC }}\)
Short circuit current of a module, a string, a PV group or a PV generator under standardised test conditions.

\section*{Maximum inverted current \(\mathrm{I}_{\mathrm{RM}}\)}

Maximum value of inverted current which a module can withstand without any damage. This value is supplied by the manufacturer.
Note 1: This value does not concern the current withstood by the diverting diodes, but the current going through the PV cells in the inverted direction of the normal current.
Note 2: The typical value for crystalline silicon is between 2 and 2.6 I scsTc of the module.

\section*{Maximum Power Point (MPP or MPPT)}

This principle, as indicated by its name (Maximum Power Point Tracker), makes it possible to track the maximum power point of a nonlinear electrical generator such as a photovoltaic generator.
The MPPT or MPPTs also generally represent a component of the inverter allowing optimised use of solar radiation, by adapting its load to the characteristics of the PV generator according to the sunlight level.

Note
\(\qquad\)

\section*{Socomec worldwide}
\begin{tabular}{|c|c|}
\hline BELGIUM & PORTUGAL \\
\hline Critical Power / Power Control \& Safety / & Critical Power / Solar Power \\
\hline Energy Efficiency / Solar Power Power & Tel. +351261812599 \\
\hline Tel. +32 23400230 & Fax +351 261812570 \\
\hline Fax +32 23462899 & info.ups.pt@socomec.com \\
\hline info.be@socomec.com & ROMANIA \\
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
FRANCE \\
Critical Power / Power Control \& Safety / \\
Energy Efficiency / Solar Power \\
Tel. +33 145146300 \\
Fax +33 148673112 \\
dcm.ups.fr@socomec.com
\end{tabular}} & Critical Power / Power Control \& Safety / \\
\hline & Energy Efficiency / Solar Power \\
\hline & Tel. +40 213193688 \\
\hline & Fax +40213193689 \\
\hline & info.ro@socomec.com \\
\hline & RUSSIA \\
\hline GERMANY & Critical Power / Power Control \& Safety / \\
\hline Critical Power & Energy Efficiency / Solar Power \\
\hline Tel. +49621716840 & Tel. +74957751985 \\
\hline Fax +496217168444 & Fax +7 4957751985 \\
\hline info.ups.de@socomec.com & inforu@socomec.com \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Power Control \& Safety / Energy Efficiency \\
Tel. +497243652920 \\
Fax +49 72436529213 \\
info.scp.de@socomec.com
\end{tabular}} & SLOVENIA \\
\hline & Critical Power / Power Control \& Safety / \\
\hline & Energy Efficiency / Solar Power \\
\hline & Tel. +38615807860 \\
\hline ITALY & Fax +38615611173 \\
\hline Critical Power & info.si@socomec.com \\
\hline Tel. +390298242942 & SPAIN \\
\hline Fax +390298240723 info.ups.it@socomec.com & Critical Power / Power Control \& Safety / Energy Efficiency / Solar Power \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Power Control \& Safety / Energy Efficiency \\
Tel. +39029849821 \\
Fax +390298243310 \\
info.scp.it@socomec.com
\end{tabular}} & Tel. +34935407575 \\
\hline & Fax +34935407576 \\
\hline & info.es@socomec.com \\
\hline Solar Power & TURKEY \\
\hline Tel. +390444598611 & Critical Power / Power Control \& Safety / \\
\hline Fax +39 0444598627 & Energy Efficiency / Solar Power \\
\hline info.solar.it@socomec.com & Tel. +90 21654071 20-21-22 \\
\hline NETHERLANDS & Fax +90 2165407127 info.tr@socomec.com \\
\hline Critical Power / Power Control \& Safety / & \\
\hline Energy Efficiency / Solar Power & Critical Power \\
\hline Tel. +31307600900 & Critical Power \\
\hline Fax +31306372166 & Tel. +441285863300 \\
\hline info.n@socomec.com & Fax+44 1285862304 \\
\hline POLAND & info.ups.uk@socomec.com \\
\hline Critical Power & Power Control \& Safety / Energy Efficiency \\
\hline Tel. +48228257360 & Tel. +441462440033 \\
\hline Fax. +48228257360 & Fax +44 1462431143 \\
\hline info.ups.pl@socomec.com & info.scp.uk@socomec.com \\
\hline \multicolumn{2}{|l|}{Power Control \& Safety / Energy Efficiency} \\
\hline \multicolumn{2}{|l|}{Tel. +48914426411} \\
\hline \multicolumn{2}{|l|}{Fax +48914426419} \\
\hline \multicolumn{2}{|l|}{info.scp.pl@socomec.com} \\
\hline
\end{tabular}

IN EUROPE
BELGIUM
Control \& Safety /
Eficiency / Solar Power Powe
Tel. +32 23400230


FRANCE
Critical Power / Power Control \& Safety /
Energy Efficiency / Solar Power
. +33145146300
Fax +33148673112

GERMANY
Critical Power
Tel. +49 621716840
Fax +496217168444

Power Control \& Safety / Energy Efficiency
Tel. +49 7243652920
x +49 72436529213

ITALY
Critical Power
+390298242942
x+39 0298240723

Power Control \& Safety / Energy Efficiency Tel. +39029849821
Fax +39 0298243310
Solar Power
Tel. +39 0444598611
ax +39 0444598627

NETHERLANDS
Critical Power / Power Control \& Safety /
Eficiency/Solar Power
el. +31 307600900
Fax +31 306372166
POLAND
Critical Power
Tel. +48228257360
\(+4822825736\)
eps.p@socomec.com

Tel. +48 914426411
info.scp.p@socomec.com

\section*{IN ASIA PACIFIC}

AUSTRALIA
Critical Power / Power Control \& Safety
Tel. +61293253900
Fax +61 298889544
info.ups.au@socomec.com
CHINA
Critical Power / Power Control \& Safety /
Energy Efficiency
Tel. +862152989555
Fax +862162283468
info.cn@socomec.com
INDIA
Critical Power / Solar Power
Tel. +914439215400
Fax +914439215450 \& 51
info.ups.in@socomec.com
info.solar.in@socomec.com
Power Control \& Safety / Energy Efficiency
Tel. +911244027210
Fax +911244562738
info.scp.in@socomec.com
SINGAPORE
Critical Power / Power Control \& Safety /
Energy Efficiency
Tel. +6565067600
Fax +6564587377
info.sg@socomec.com
THAILAND
Critical Power
Tel. +66294116447
Fax +66 29411650
info.ups.th@socomec.com
VIETNAM
Critical Power
Tel. +84835591220
Fax +84835591221
info.ups.vn@socomec.com

\section*{IN MIDDLE EAST}

UNITED ARAB EMIRATES
Critical Power / Power Control \& Safety /
Energy Efficiency / Solar Power
Tel. 997142998441
Fax +97142998449
info.ae@socomec.com

\section*{N AMERICA}

USA, CANADA \& MEXICO
Power Control \& Safety / Energy Efficiency
Tel. +1 6172450447
Fax +16172450437
info.us@socomec.com
OTHER COUNTRIES
NORTH AFRICA
Algeria/ Morocco / Tunisia
info.naf@socomec.com

\section*{AFRICA}

Other countries
info.africa@socomec.com
SOUTH EUROPE
Cyprus / Greece / Israel / Malta
info.se@socomec.com
SOUTH AMERICA
Tel. +34 935407575
info.es@socomec.com
MORE DETAILS
www.socomec.com/worldwide

\section*{SOCOMEC GROUP}
S.A. SOCOMEC capital \(10816800 €\)
R.C.S. Strasbourg B 548500149
B.P. 60010-1, rue de Westhouse

F-67235 Benfeld Cedex - FRANCE
Tel. +33388574141
Fax +33 388740800
info.scp.isd@socomec.com```


[^0]:    (1) 45 mm modular DIN front plate included.
    (2) Standard handle.
    (3) Default connected device (see "Connection of poles" page 24).

